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Abstract
In this review a systematic analysis of the potential energy landscape (PEL) of glass-forming
systems is presented. Starting from the thermodynamics, the route towards the dynamics is
elucidated. A key step in this endeavor is the concept of metabasins. The relevant energy scales
of the PEL can be characterized. Based on the simulation results for some glass-forming
systems one can formulate a relevant model system (ideal Gaussian glass-former) which can be
treated analytically. The macroscopic transport can be related to the microscopic hopping
processes, using either the strong relation between energy (thermodynamics) and waiting times
(dynamics) or, alternatively, the concepts of the continuous-time random walk. The relation to
the geometric properties of the PEL is stressed. The emergence of length scales within the PEL
approach as well as the nature of finite-size effects is discussed. Furthermore, the PEL view is
compared to other approaches describing the glass transition.

(Some figures in this article are in colour only in the electronic version)

Contents

1. Introduction 2
1.1. Characterizing the glass transition 2
1.2. Characterizing the potential energy landscape

via inherent structures 4
1.3. Alternative characterization of the PEL 6
1.4. Scope of the article 8

2. Theoretical approaches for glass-forming systems 10
2.1. Mode-coupling theory 10
2.2. Characterization of activated processes via

thermodynamic approaches 11
2.3. Models about defect motion and facilitated spins 13

3. Individual inherent structures and thermodynamics 13
3.1. Number of inherent structures 13
3.2. The partition function 14
3.3. Thermodynamic properties 15
3.4. Simulation results 16

3.5. Properties of energy distributions 18
3.6. Population of barriers 19

4. Local dynamics on the PEL 19
4.1. Pairs of inherent structures—low-temperature

anomalies 19
4.2. Escape from an IS: concepts 21
4.3. Escape from an IS: simulations 23

5. Impact of energy on the local mobility 24
5.1. Activated transitions on the PEL: models 24
5.2. Metabasins 26
5.3. Insight from simulations 28

6. The average dynamic behavior as determined by the
thermodynamics 30
6.1. MB probability densities and the waiting time

distribution 31
6.2. Temperature-dependent moments of the wait-

ing time distribution 32

0953-8984/08/373101+56$30.00 © 2008 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/20/37/373101
http://stacks.iop.org/JPhysCM/20/373101


J. Phys.: Condens. Matter 20 (2008) 373101 Topical Review

6.3. Fragility 33
6.4. Relaxation properties and violation of the

Stokes–Einstein relation 34
6.5. Exploration of MBs in different temperature

regimes 35
7. Sequences of MBs and their real space realization 37

7.1. Properties of MB transitions 37
7.2. Time-resolved dynamics 39
7.3. Continuous-time random walk (CTRW) for-

malism 40
8. Comparison of different system sizes 43

8.1. Superposition of elementary systems: theory 43
8.2. Simulation of different system sizes 44

9. Length scales and dynamic coupling effects 45
9.1. Energy master equation 46
9.2. Length scales in the PEL approach 48
9.3. Comparison with the KCM 49

10. Summary 49
Acknowledgments 50
Appendix A 50
Appendix B 50
Appendix C 51
Appendix D 51
Appendix E 52
Appendix F 52
Appendix G 52
Appendix H 53
References 53

1. Introduction

Understanding the properties of glass-forming systems has
been a major scientific issue for quite some time. Due to the
complex multi-particle behavior progress has been slow. This
paper aims to discuss the phenomenology of glass-forming
systems in terms of the potential energy landscape (PEL).
This is a multi-dimensional surface describing the dependence
of the potential energy on the coordinates of the atoms or
molecules [1]. Several important review articles and books
have been recently written about properties of supercooled
liquids [1–15] and some specifically concentrating on the
properties of the PEL [1, 2, 10, 11]. Before presenting the
specific scope of the present article a summary of relevant
experimental and numerical observations as well as a brief
introduction into the concept of the PEL will be given.

1.1. Characterizing the glass transition

Once crystallization has been avoided during cooling down a
melt, e.g. by using a high cooling rate, the system is denoted
supercooled. Thermodynamically it is in a metastable state.
Its structure is still liquid-like and the dynamics becomes more
and more sluggish upon further cooling down. Finally, when
the viscosity has reached η = 1013 P, the system behaves solid-
like on typical experimental timescales of seconds. Often this
temperature is denoted the glass transition temperature Tg.

1.1.1. Structural relaxation and non-exponentiality. A
central quantity above Tg is the structural or α-relaxation
time τα . It is related to η via the Maxwell relation τα =
η/G∞ where G∞ is the instantaneous shear modulus. Since
G∞ is only weakly temperature dependent, the temperature
dependence of η and τα is very similar. The structural
relaxation, as determined, e.g., by the incoherent scattering
function

S(q, t) ≡ 〈cos[�q(�r(t) − �r(0))]〉, (1)

is strongly non-exponential and often fitted by a KWW func-
tion exp(−(t/τKWW)βKWW). The non-exponentiality is typically
related to dynamic heterogeneities, i.e. the presence of fast and
slow molecules [16–18]. In the low-temperature regime βKWW

often decreases with decreasing temperature [19]. Tentatively,
one may identify the structural relaxation time τα via the con-
dition

S(qmax, τα) = 1/e (2)

where qmax corresponds to the maximum of the structure factor.
Thus, on the timescale of τα a typical particle moves a distance
of about the nearest-neighbor distance, leading to a local
reorganization of the structure.

1.1.2. Fragility and Stokes–Einstein relation. The viscosity
of systems such as silica displays an Arrhenius behavior in
the experimentally accessible temperature range. This is
characteristic of a strong system. Most systems, however,
only show an Arrhenius behavior at very high temperatures,
whereas in the supercooled regime they display an increase of
the apparent activation energy Eapp(T ) ≡ d ln η/d(1/T ) [20],
which is the apparent slope in the Arrhenius representation of
η versus 1/T . From this one can define the kinetic fragility
index

mkin = Eapp(Tg)

Tg
. (3)

This is the apparent slope in figure 1 at the right end. The
larger the increase of Eapp(T ) with temperature the larger the
fragility index and, thus, the more fragile the system.

Interestingly, systems with different fragilities also show
different temperature dependences of the entropy [20]. Thus,
fragility is considered to be an important characteristic of a
glass-forming system.

Similarly, one can also study the temperature dependence
of the diffusivity D(T ). Whereas it shows the same general
behavior as τα(T ) (or η(T )), a closer analysis reveals that
D(T )τα(T )/T is not constant, thereby violating the Stokes–
Einstein relation [21]. Typically one can write

D(T )τα(T ) ∝ (τα(T ))α (4)

with the dynamic exponent α around 0.25 [21]. Simulations
of a Lennard-Jones system yield α ≈ 0.35 [22], although
currently a smaller value of 0.17 is discussed, based on a
different value of z (see section 1.1.4) [23].

Finally, it is noted that often the temperature dependence
of τα is fitted by the Vogel–Fulcher–Tamman (VFT)
relation [24]

τα(T ) ∝ exp(BVFTT0/(T − T0)). (5)
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Figure 1. Angell plot for different glass-forming systems, displaying
the difference between strong and fragile systems. Reprinted with
permission from [7]. Copyright 2000, American Institute of Physics.

1.1.3. Fragility versus non-exponentiality. A crucial question
is whether fragility and non-exponentiality are correlated. As
shown in figure 2, polymers show a significant correlation
between both quantities. More fragile systems (m large) are
more non-exponential (βKWW small) [5, 25]. Furthermore,
considering all systems together also a strong correlation
is observed. Subgroups, however, display a much weaker
correlation. This holds, e.g., for network-forming systems
which are on the strong side and display nearly exponential
relaxation as well as molecular glass-formers. Their values
of βKWW and mkin are scattered significantly but only show
a very weak correlation; see figure 2. The presence
of a significant correlation between non-exponentiality and
fragility has recently been questioned by Dyre [26].

1.1.4. Dynamic heterogeneities and length scales. It has
been shown that the non-exponentiality of the relaxation is

mainly due to a superposition of fast and slow relaxing entities,
i.e. the presence of dynamic heterogeneities. This spread in
mobility is observed in computer simulations, e.g. [27–33]
(and many, many more), and also from different experimental
techniques [16, 34–36]. Furthermore, the occurrence of fast
and slow molecules is spatially correlated. Roughly speaking,
three different length scales have to be distinguished.

First, a rearrangement process between inherent structures
(see below for the definition), characterized by a participation
ratio z1 (see section 7.1), corresponds to an elementary
excitation. The collective process requires the motion of
O(101) particles, a number which is only weakly dependent
on temperature in the numerically accessible temperature
range [37].

Second, at a given time the mobility of nearby molecules
is correlated. Thus, one can define a correlation length ξcoll of
dynamic heterogeneities. It is a collective correlation effect.
Of course, many different specific definitions are possible,
e.g. monitoring the size of slow or fast regions. A direct
measurement of the length scale of dynamic heterogeneities
ξcoll is possible via multi-dimensional NMR experiments.
Measuring the size of slow regions along its shortest direction
(in the case of non-spherical shapes) yields values around
2 ± 1 nm for different glass-forming systems close to the
glass transition [38–40]. These length scales can be also
determined from computer simulations via so-called four-
point susceptibilities χ4(t) or related observables [12, 41–44],
correlating the dynamics at two different positions. In all cases
χ4(t) displays a maximum for times around τα [43, 45]. In
principle, the spatial structure of the dynamic heterogeneities
has to be known in order to extract a well defined length
scale [46]. ξcoll is related to the relaxation time, τα , by a
power law τα ∝ ξ z

coll, where z ≈ 8.5 for a Lennard-Jones
system (taking the recent data from [47]). Other data yield
a somewhat smaller value z ≈ 5 [48]. Recently, a general
way to extract length scales from dynamical susceptibilities has
been suggested which can be easily applied to experimentally
accessible observables [49]. Interestingly, no significant
correlation of ξcoll at Tg with fragility is observed.

Third, there is a length scale from which point on
the single-particle dynamics is non-Fickian, i.e. displays a

Figure 2. Left: non-exponentiality parameter βKWW versus fragility index m for simple and complex molecular glass-formers, network
systems, polymers and polyalcohols, as presented in [25]. Right: subset of simple and complex molecular glass-formers. The correlation
coefficient between both quantities is around −0.28.
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wavevector-dependent (apparent) diffusion constant. This
length scale is denoted ξsingle. Recent experiments from the
Ediger group have shown for an organic glass-forming system
that close to Tg the value of ξsingle can be significantly larger
than 5 nm [50]. From the numerical data in [22] it seems
that the temperature dependence of ξsingle is similar to that of
ξcoll. This temperature dependence can under special model
assumptions be directly related to the violation of the Stokes–
Einstein relation [51].

Computer simulations can characterize the properties
of dynamic heterogeneities on a more microscopic level.
Different entities have been identified. Elementary cooperative
motions have the structure of strings [29]. On longer
timescales, the region of mobile particles appear to be
more compact and these are denoted clusters [30, 52]. Is
there a structural origin for some region of the supercooled
liquid to be particularly slow or fast? The key idea to
approach this question is to perform repeated simulations
from the same configuration with different initial velocities
(isoconfigurational ensemble). For a small system it has been
shown in this way that configurations exist for which the
mobility of the whole system during the next time interval
was always higher than the average mobility (starting from
an average configuration) [53]. Thus, there exists indeed a
structural reason for the system to be fast or slow. In a recent
series of interesting papers [54, 55] a similar approach has
been chosen for a large system where in the same system there
are fast and slow regions. Again, specific regions appeared
for different initial velocities and thus structure dominates
the dynamic heterogeneities. Here it is important not to
consider the single-particle mobility because of the strong
residual fluctuations from run to run but rather consider a
coarse-grained observable [47]. The actual structural origin,
determining the local mobility, is still under debate. For
Ni0.5Zr0.5 around the glass transition temperature the residual
mobility of the small atom (Ni) is clearly related to the local
cage volume around the Ni atoms [56]. For systems in
equilibrium a correlation of mobility and local volume seems
to be absent [57].

1.2. Characterizing the potential energy landscape via
inherent structures

1.2.1. General. . . . when all is said and done, the existence
of potential energy barriers large compared to thermal energy
are intrinsic to the occurrence of the glassy state, and dominate
flow, at least at low temperatures [58]. In that paper by
Goldstein from 1969 the stage is set for describing the
properties of a supercooled liquid via its potential energy
landscape (PEL). Formally, the PEL of an N-particle system is
just given by the representation of the potential energy function
V (�r1, . . . , �rN ) in the 3(N − 1)-dimensional configuration
space. At fixed volume this representation is temperature
independent. The statement by Goldstein suggests that at
low temperatures the system is close to local minima (also
called inherent structures (ISs)) of the PEL, separated by large
barriers relative to kBT (in the following we will always set
kB = 1). This statement is somewhat trivial in the limit of

(eber, Stillinger)

+
+

(eber, Stillinger)

Figure 3. Sketch of a 2D landscape together with the IS (crosses),
transition state (open circle) and basin border (dashed line). The
solid line indicates a possible molecular dynamics trajectory at low
temperatures. The solid circles denote the positions of the system
from which the minimization procedure may have started,
respectively. For that case both minima would be found exactly three
times as the result of a minimization via steepest descent.

zero temperature. Goldstein, however, estimated that already
for temperatures for which the relaxation processes occur in
the microsecond regime, the PEL approach may be useful,
i.e. far above the calorimetric glass transition temperature Tg.
In this temperature regime the physics of the system is mainly
determined by the ISs and their local (and thus harmonic)
surroundings, as well as the transition paths between them. As
compared to the full potential energy function V (�r1, . . . , �rN )

this is a dramatic simplification because mainly the locations
of the minima and barriers, i.e. a subset of measure zero of the
total space, enter the description of the vitrification process.
This is sketched in figure 3.

Formally, nearly all configurations can be uniquely
mapped on an IS by minimizing its potential energy along the
steepest descent path (except for configurations exactly on a
saddle, which, however, is a set of measure zero). Then the
potential energy of a system can be viewed as a superposition
of the energy of the related IS and some additional vibrational
energy. More than a decade after the Goldstein work Stillinger
and Weber have used this idea to determine properties of the
IS from molecular dynamics simulations [59–61]. For this
purpose they have regularly quenched the actual configuration
to determine the related IS. Its energy will be denoted e. In this
way they have observed how the system explores the PEL in
terms of the related IS. This is sketched in figure 3. A real space
sketch of the actual trajectory can be found in figure 4. Most
numerical examples, which will be shown in this section, have
been obtained for the binary mixture Lennard-Jones (BMLJ)
system; see section 1.4 for a closer description. As usual, all
temperatures will be given in units of the interaction parameter
between the majority particles.

Naturally, dynamic observables may look somewhat
different when comparing the original and the IS trajectory.
Qualitatively, the IS trajectory corresponds to discrete hopping
processes rather than to a continuous process as for the

4
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True Trajectory

Inherent Trajectory

Figure 4. Comparison of the actual trajectory and the trajectory of
inherent structures. σAA reflects the equilibrium distance between
adjacent particles. Reprinted with permission from [62]. Copyright
2000, American Institute of Physics.

original trajectory. This is exemplified in figure 5 for
the incoherent scattering function S(q, t). The decay
characteristics of the α-relaxation is basically identical. The
main difference can be found in the short-time regime of
local vibrations and the fast β-process, related to the gradual
escape from the local cage. Because in the IS trajectory the
fluctuations around the respective IS have been taken out, the
incoherent scattering function is mainly sensitive to the α-
process. More quantitatively, one can approximate S(q, t) =
f (q, t)SIS(q, t), where the function f (q, t), possessing some
finite long-time plateau, describes the initial decay of the
incoherent scattering function. The second factor mainly
reflects the structural relaxation and is just the incoherent
scattering function, extracted from the IS trajectory. This
analysis implies that the standard definition of τα , namely
S(qmax, t = τα) = 1/e does not fully reflect the timescale
of the structural relaxation because of the additional influence
of f (q, t).

1.2.2. From energy to mobility. As a next scientific
cornerstone a relation between the IS properties and the
dynamics has been established in the paper by Sastry,
Debendetti and Stillinger [63]. They asked whether the
different dynamical temperature regimes, observed for the
model glass-former BMLJ, can be related to properties of the
PEL. Basically three temperature regimes can be identified.
Starting from high temperatures a first transition around T ≈
1 can be best studied from analyzing the temperature and
time dependence of the incoherent scattering function S(q, t),
which is the spatial Fourier transform of the self-part of the
van Hove self-correlation function Gs(r, t). For T > 1,
S(q, t) can be described by a simple exponential, and its
decay time, i.e. the α-relaxation time, shows an Arrhenius
temperature dependence. When cooling down below T = 1,
S(q, t) becomes non-exponential and furthermore displays a
non-Arrhenius temperature dependence as known for fragile

Figure 5. Comparison of the incoherent scattering function of the
actual trajectory (upper figure) as compared to that of the inherent
structure trajectory (lower figure) for a binary Lennard-Jones system.
The temperature scale for that system is slightly higher than that for
the often-used Kob–Andersen model. The later part of the incoherent
scattering function, corresponding to the α-relaxation, has been fitted
by a KWW function. It turns out that except for the highest
temperature the timescale as well as the non-exponentiality
parameter βKWW are the same within statistical uncertainty. The
initial part in the upper figure corresponds to the local vibrations and
the fast β-process. Due to the very nature of the inherent structure
trajectory the effect of local vibrations is not present in its trajectory.
Reprinted with permission from [62]. Copyright 2000, American
Institute of Physics.

glass-forming systems. A second transition seems to occur
below T ≈ 0.45 because Gs(r, t) displays a nearest-neighbor
peak, which may tentatively be interpreted as a signature of
activated hopping dynamics.

Interestingly, these three temperature regimes are reflected
by the average IS energy as shown in figure 6, obtained
from the Stillinger–Weber procedure [63]. For T > 1 the
energy does not depend on temperature, i.e. the temperature
dependence of the dynamics is not reflected by the properties
of the visited IS. This is the regime of free diffusion. The
potential energy is so high that the dynamics of the system
is hardly influenced by the little barriers between the minima
(more formally this can be described in terms of anharmonic
contributions; see section 3). For 0.45 < T < 1 the average IS
energy strongly decreases with decreasing temperature. This
means the system is exploring lower and lower IS on the PEL.
For even lower temperatures the energy becomes a constant.
A closer analysis shows that the system is basically stuck in
some region of the PEL. Since the temperature of the second
transition in figure 6 strongly depends on the cooling rate
it is suggested that here the glass transition sets in. Stated
differently, for a much smaller cooling rate (not possible for
computer simulations) the transition to the constant energy

5
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Figure 6. Average IS energy versus temperature for different cooling
rates for a binary mixture Lennard-Jones system. Reprinted by
permission from Macmillan Publishers Ltd: Nature [63] copyright
1998.

regime would be at significantly lower temperatures. More
than one decade earlier, Jonsson and Andersen already reported
similar results and also interpreted them in terms of the PEL
approach [64].

A direct relation between energy and dynamics is shown
in figure 7 for simulations of a small silica model. Several
important features can be observed: (i) the residence in low-
energy ISs is very long as compared to the residence in high-
energy ISs. (ii) Subsequent energies are correlated. (i) and
(ii) naturally give rise to the fountain-type appearance of this
plot. (iii) There exist correlated forward–backward dynamics
(e.g. during the long residence in a low-energy IS between
30.5 and 35 ns the system attempts a few times to leave
this IS but then returns to the same configuration). Also for
large systems some correlation between particle mobility and
a locally defined potential energy is observed [30]. One goal
of this review is to elucidate the different pieces of information
from this energy-resolved IS trajectory.

1.2.3. Going beyond supercooled liquids. In recent years
a lot of work has also been devoted to the study of the PEL
of clusters and biopolymers. A detailed account of this work
can be found in the book by Wales [10]. For these systems
one is typically interested in one or a few low-energy ISs,
corresponding, e.g., to the native state of the biopolymer.
For the case of Lennard-Jones clusters this low-energy IS is
directly connected to a large number of other ISs [65]. As a
consequence, it serves as a kind of hub in the network topology
and properties of small-world and scale-free networks can be
identified [65]. In contrast, for glass-forming systems one
expects that there exists a large variety of different amorphous
low-energy states. This very different behavior implies that the
theoretical description for the transport and relaxation will be
quite different for supercooled liquids as opposed to clusters
or biopolymers. However, for the characterization of the local
dynamics similar concepts can be used.

Figure 7. The time series of IS energies for a model of silica at
3000 K, obtained via frequent minimization of the molecular
dynamics trajectory.

1.3. Alternative characterization of the PEL

Beyond the interpretation of the dynamics in terms of
transitions between ISs, different characteristics of the PEL
have also been used to relate the PEL to the dynamics.

1.3.1. Using barrier information via instantaneous normal
modes. In the INM approach one calculates the Hessian
for equilibrium configurations. Close to a minimum all
eigenvalues are positive. However, at ambient temperatures the
Hessian also displays negative eigenvalues which correspond
to a negative curvature of the energy along the direction of the
corresponding eigenvector. The goal is to take the negative
curvature as an indicator for the modes close to a saddle, along
which the system may therefore easily move in configuration
space [66–68]. A closer analysis reveals that some of these
modes are not related to saddles (or, equivalently, to the
presence of double-well potentials) but rather to different types
of anharmonicities (shoulder modes) [67]. After subtracting
these modes one ends up with the so-called double-well modes.
The fraction is denoted fdw. Strictly speaking, a further
distinction has to be made to exclude double-well modes which
belong to intra-IS dynamics [69].

It turns out for a model of water [67] that over the whole
temperature regime accessible by computer simulations the
number of double-well modes [67] is related to the diffusion
constant via D ∝ ( fdw − f0)

2 with a fitting parameter f0; see
figure 8. For a model of silica one finds D/T ∝ f 1.3

dw [68].
These results suggest that in the weakly supercooled region
the slowing down of the dynamics is related to the decreasing
number of free directions. In this interpretation barriers do not
play a significant role. This picture is supposed to break down
in the limit of very low temperatures for which the transport
requires an activated process over a barrier [67]. As will be
discussed in section 6.5 a strong relation of D and fdw can
also be rationalized in the opposite scenario for which the
crossing of barriers is indeed an essential ingredient for the
understanding of the dynamics.

Interestingly, the spatial analysis of the unstable modes
has revealed a correlation between clusters of particles having

6
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Figure 8. The number of diffusive directions versus the diffusion
constant for the case of water, using different densities and
temperatures. Reprinted with permission from [67]. Copyright
2001 by the American Physical Society.

large displacements in the unstable modes and dynamical
heterogeneities [70].

1.3.2. Using barrier information via saddle indices.
Whenever the gradient of the potential energy function
V (�r1, . . . , �rN ) vanishes, one either has a minimum (IS) or a
saddle point. A saddle point configuration can be classified
according to its number of negative eigenvalues of the Hessian
matrix ns and the potential energy es of this configuration. By
definition, ISs simply correspond to saddle points with ns = 0.
A convenient way to identify saddle point configurations is via
an auxiliary function W , using the gradient of V ,

W = (1/2)| �∇V |2. (6)

By definition, W is strictly non-negative. For configurations
which correspond to a saddle point in V , one naturally gets
W = 0. Thus, saddle points in V correspond to local minima
in W and thus can be identified by a minimization procedure.
Of course, there may be minima of W which are not saddles
of V [71]. On a qualitative level, however, these additional
minima do not change the relevant results [71]. In what follows
a distinction between saddle points of V and minima of W is
not made.

As for the potential energy V , the total configuration space
can be partitioned into different basins of attraction of the
minima of W . A configuration can thus be characterized,
on the one hand, by ns and es, obtained from minimization
of W , and by e, obtained from minimization of V . By
performing a Stillinger–Weber-type analysis of W at a given
temperature T one can determine 〈es(T )〉 and 〈ns(T )〉 as the
average values of es and ns of the different minima of W .
Analogously, one can define 〈e(T )〉 as the average IS energy,
obtained from analysis of V . Angelani et al calculated the
temperature dependence of these three observables [72]. They
obtained the following results. (1) For different Lennard-Jones
systems 〈ns(T )〉 seems to disappear after extrapolation on a
linear scale close to some temperature Tc which turns out to be
close to the mode-coupling temperature TMCT; see section 2.2
for a short description of the mode-coupling theory. These
results are shown in figure 9. The authors conclude that the
mechanism of the dynamics is changing around Tc. Whereas
for T > Tc the system explores basins of W related to saddle

0.05

0.04

0.03

0.02

0.01

0.00

n s
/2

N

0.0 0.5 1.0 1.5
Temperature

MLJ

BMLJ

Figure 9. Temperature dependence of the fraction of the negative
eigenvalues of the Hessian calculated at the inherent saddle
configurations for two different Lennard-Jones models. Adapted with
permission from [72]. Copyright 2000 by the American Physical
Society.

points, below Tc the system spends most of its time close
to IS. Thus, the presence of IS only becomes important for
temperatures around Tc. In particular this seems to imply (in
agreement with the INM analysis) that the diffusion process
is entropy driven, i.e. not governed by barrier crossing events.
(2) 〈es(T )〉− 〈e(T )〉 scales linearly with 〈ns(T )〉. This implies
that there is a fixed energy difference 	e between pairs of
minima of W for which the saddle index differs by one.
Comparing different systems one finds 	e ∝ Tc [73]. These
findings suggest that the properties of the PEL around an IS are
highly regular and do not depend on the energy of the IS.

A related but somewhat different analysis has been
performed by Grigera et al [74]. In that work es is correlated
with ns (using the above notation). They observe that the
average saddle point index ns for a given energy es is roughly
linearly correlated with es. Again, after linear extrapolation to
low es one can define a threshold energy eth below which (in the
sense of that extrapolation) one has ns = 0, i.e. all low-energy
saddle points are minima. The critical temperature Tc related to
this energy in equilibrium is again close to TMCT. The authors
conclude that the change in behavior when going below Tc, and
thus TMCT, is geometric in nature. Basically, this interpretation
agrees with the analysis of Angelani et al, described above.
Similar results have also been reported in [75].

Another aspect of this work is the determination of barrier
heights. Starting from a saddle point with unit index they
determine the minima on both sides of that saddle. From this
the authors obtain the barrier height, defined as the energy
difference between saddle point and minimum energy. The
results are shown in figure 10. First, the barriers which are
related to minima around eth are of the order of 10Tc, which
agrees with a corresponding estimate in [73]. Second, they
find that ISs with lower energies have higher barriers. If plotted
against the total IS energy, the slope in the linear low-energy
regime is around −0.5. These results will be taken up again in
section 5.3.

This type of analysis yields relevant information about
the nature of the PEL. However, one important problem has
been mentioned in the literature [53, 76]: the disappearance of
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Figure 10. The typical barrier height for an IS, obtained from finding
the two minima, related to a saddle point configuration and
calculating the difference in energy. The simulations have been
performed for a soft-sphere system with N = 70 particles. Note that
the x-axis displays the energy per particle. The variable uth is
denoted eth in the text. Reprinted with permission from [74].
Copyright 2002 by the American Physical Society.

〈ns(T )〉 at Tc is only apparent. A closer analysis shows that
it just displays an Arrhenius behavior, i.e. there is no change
in mechanism around Tc; see section 3.6. Actually, in the IS
approach, discussed in the later part of this review, the energy
scale ecross rather than eth turns out to be relevant. This is the
energy from which point on the barrier height starts to increase
for decreasing energies (see figure 10). Central quantities such
as the fragility can be explicitly expressed in terms of ecross.

1.4. Scope of the article

The main topic of this review is the description of the
equilibrium properties of supercooled liquids in terms of
properties of the PEL (neglecting, of course, the crystalline
contributions which would be present in true equilibrium).
Unfortunately, to stay focused many important properties of
supercooled liquids cannot be explicitly discussed (e.g. aging,
rotational dynamics of non-spherical elementary units, shear
effects, . . .). In many of these problems, the concepts discussed
in this work can be very fruitfully applied (e.g. describing
aging in terms of the PEL [77]). Special emphasis is given
to the description of the underlying concepts. Furthermore, the
relation of the PEL approach to other theories and models of
the glass transition is explicitly discussed.

1.4.1. Hierarchy of questions. For a simple one-dimensional
model PEL with seven ISs (denoted IS1, . . ., IS7), shown
in figure 11, a set of questions and problems is formulated
which have to be answered in the process of understanding the
dynamics in this PEL. These questions will correspond to the
different sections in this review. Of course, the configuration
space of a real supercooled liquid is highly multi-dimensional
rather than one-dimensional.

(1) Thermodynamics (section 3). Characterizing the location
of the particle at a randomly chosen time at sufficiently

Figure 11. A one-dimensional model PEL for the general discussion.

low temperatures (qualitatively, T 
 barrier heights)
requires knowledge about the nature of the different ISs,
i.e. their energy distribution and the curvature at the
minima. In contrast, in the limit of high temperatures the
full basin of attraction, i.e. the region from the minima up
to the respective saddles, matters for the thermodynamics.
Both scenarios can be distinguished by analysis of the
equilibrium population of the barriers. Only in the
latter case will a significant population of the high-energy
regions be observed.

(2) Leaving an IS (section 4). First, there is the obvious
question about the elementary transition between two
adjacent ISs. For a given pair of ISs the transition rate
mainly depends on the barrier height. Thus, even for low
temperatures, transitions between IS1 and IS2 may still
occur on relevant timescales. This is important for the
so-called low-temperature anomalies [78–80]. Analyzing
the escape from IS3 a second question emerges. Because
a transition to IS2 is faster than a transition to IS4, very
likely the particle will first jump back to IS2 before much
later the rest of the configuration space can be explored.
For a disordered PEL the presence of correlated forward–
backward jumps between ISs turns out to be a central
property. Having this in mind one may be interested in the
rate with which a particle effectively leaves an IS, i.e. just
returns with a small statistical probability. For the model
PEL the effective escape from IS3 would be complete after
the barrier to IS4 is crossed. Thus, two different waiting
times can be defined: (1) the time to leave an IS; (2) the
time to effectively leave an IS. In general, the latter can
be much longer and is finally relevant for the relaxation
properties.

(3) Relation between energy and effective waiting time
(section 5). The timescale for a effective escape from IS3

is similar to that of IS1 (or IS2) because it is most likely
that the particle at IS3 first jumps to IS2 before entering
IS4. Thus, no clear relation between IS energy and
effective waiting time can be formulated. This problem
disappears if one considers a coarse-grained PEL where
IS1–IS3 and IS4–IS5 are regarded as single elementary
states with an allocated energy of IS1 and IS5, respectively.
In contrast, IS6 and IS7 are not modified. These states will
be denoted metabasins (MBs). Thus, for our model PEL
four MBs (IS1–IS3, IS4–IS5, IS6, IS7) exist. On the level
of MBs a significant relation between energy and waiting

8
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Figure 12. Time dependence of the energy of one (left) or ten (right) particles in independent asymmetric DWPs.

time is expected. For example, the third MB, originally
denoted IS6, possesses the highest energy and the shortest
waiting time. Furthermore, with this choice the effective
escape from IS3 is governed by the effective escape from
IS1 and thus determined by the energy of IS1. On the
level of MBs we no longer have to distinguish between
waiting time and effective waiting time. Furthermore, a
dramatic reduction of correlated forward–backward jumps
is expected. Of course, the present description of MBs is
just qualitative. It becomes more quantitative in section 5.

(4) Averaged local dynamics (section 6). Knowing the energy
distribution of MBs and the relation between energy and
waiting time it is, of course, possible to calculate the
average waiting time. This quantity turns out to be very
important because it is directly related to the diffusivity.
Furthermore, the temperature dependence of the average
waiting time is directly related to the question of fragility.
This will allow us to suggest which PEL parameters
influence the fragility.

For the model PEL it would be sufficient to know
the waiting times of the different (and countable) MBs
to predict quantities such as the diffusivity. For glass-
forming systems there is no possibility to obtain a
systematic enumeration of the PEL because of the
exponentially large number of ISs (and MBs). Rather, one
has to rely on a finite sample, obtained, e.g., from a finite-
time MD simulation. Since both ingredients, mentioned
above, can be obtained from a finite set of ISs (or MBs)
a statistical approach is easy to implement. Of course,
the results of the statistical analysis can be compared with
phenomenological approaches which try to capture the
essential properties of the PEL.

(5) Exploration of the whole configuration space and the
relation to the real space properties (section 7). In the
last step one has obtained information about the waiting
time of an MB. In the model PEL the global dynamics
can be basically described as a random walk between
the four MBs. A priori it is not clear whether this also
holds for the high-dimensional PEL of a glass-forming
system. Furthermore, to describe the transport and thus
to calculate observables such as the diffusion constant or
the incoherent scattering function one needs to know the
real space realization of the transitions between MBs.

(6) Dependence on system size (section 8). Going beyond the
simple model PEL one always has to take into account
that a PEL depends on the choice of the system size.

For example, one has to tackle the important question
about the optimum system size to extract the relevant
processes for the slowing down of the dynamics. For
most types of simulations it is best (apart from possible
computer time or memory problems) to use systems as
large as possible [12]. This does not hold if one wants
to analyze the PEL. To illustrate the problem we analyze
the dynamics of a particle in an asymmetric DWP with
energies at −1 and +1 and with a population difference
of 4:1. In figure 12 we show the time-dependent energy,
obtained from a simple Monte Carlo simulation. These
data allow one to reconstruct the underlying physical
situation. The resulting energy histogram is bimodal with
the correct population ratio of 4:1 (apart from noise).
Additionally, we consider the case where one has ten
particles which independently jump in their respective
DWPs. The temporal evolution of the average energy is
also shown in figure 12. Basically, these data look like
white noise and in particular do not reflect the underlying
physics of a DWP. Thus, the energy histogram would not
reveal the underlying bimodality of the individual DWP
because of a trivial superposition effect.

This is exactly what happens when performing the
PEL analysis for very large systems. The waiting time
distribution becomes very narrow and specific properties
of the energy histogram trivially disappear, leading to a
reduction of the information content. Therefore, it is
advantageous to choose system sizes which are, on the
one hand, as small as possible but which, on the other
hand, do not show relevant finite-size effects. To a first
approximation the large system can then be regarded as a
superposition of independent subsystems.

(7) Length scales (section 9). If these subsystems are fully
independent the maximum length scale of cooperative
dynamics would be given by the size of these subsystems.
Naturally, due to its spatial proximity adjacent subsystems
(in real space) will have some kind of interaction if a
macroscopic system is considered. It will be explored
whether this interaction may give rise to a length scale
extending the size of the individual subsystems. This
aspect is crucial for the question of whether the PEL
approach may contain the possibility of temperature-
dependent length scales.

This closes the logical string of problems which has to
be solved for a broader understanding of the properties of
supercooled liquids in terms of the underlying PEL.
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1.4.2. Computer simulations. A lot of insight in this field
naturally stems from computer simulations. However, the
simultaneous development and analysis of concepts to describe
the PEL are essential for an appropriate interpretation of
simulation results. Most simulation results will be reported
for constant volume. Conceptually, the analysis at constant
volume is easier to perform than at constant pressure. As
discussed, e.g., in [81, 82] the density changes at constant
pressure have only little influence on the nature of the glass
transition and the degree of fragility remains constant when
changing the pressure [83]. In a few cases, the PEL at constant
pressure has also been analyzed in the literature [84, 85] and
a consistent analysis in terms of PEL properties has been
presented [86]. Furthermore, characterization of the PEL has
been performed also as a function of volume [87].

In recent years many systems have been studied via
computer simulations [88]. In this review we particularly
refer to the BKS model of silica (BKS-SiO2) [89] and the
binary mixture Lennard-Jones system (BMLJ), which is one
of the prototype computer glass-forming systems. This was
first introduced by Stillinger [90] and then improved and first
systematically analyzed by Kob and Andersen [91, 92]. In its
standard version it contains 80% large and 20% small particles.
Other important potentials, used in the study of the PEL
properties, are that of orthoterphenyl [93] and the Dzugatov
potential [94]. Water has also been studied extensively; see,
e.g., [95, 96]. Due to the fast hydrogen dynamics it seems
that one has strong fluctuations even in the IS energy time
series. This somewhat hampers a clear-cut analysis of the
dynamics in terms of energies. To study small systems it is,
of course, necessary to use periodic boundary conditions in
order to recover properties of supercooled liquids rather than
those of clusters. Whether the PEL is explored via molecular
dynamics or Monte Carlo routines is, for most questions that
are raised in this work, of minor relevance (exceptions are,
e.g., the determination of dynamic susceptibilities such as
χ4(t) [97–99]).

2. Theoretical approaches for glass-forming systems

In this section alternative theoretical approaches are briefly
summarized. We will start with the mode-coupling theory
which results from the description of the liquid [100].
Activated processes do not explicitly appear in this approach.
In particular there is no direct reference to the PEL. Many
other approaches directly start from a phenomenological
characterization of the nature of activated processes. It
is generally accepted that somewhat above the glass
transition temperature the particle rearrangements correspond
to localized collective dynamical processes. Thus, these
approaches have to tackle the following questions in order to
characterize the relaxation of a glass-forming system.

• What is the elementary subvolume for which the
relaxation processes are described?

• What is the free energy barrier for the activated transition?
• How do fluctuations enter?
• How do adjacent elementary subvolumes interact with

each other?

2.1. Mode-coupling theory

A very well established theoretical framework is the mode-
coupling theory, promoted in particular by Götze and co-
workers [100, 101]. The key approximation is based on
the assumption that the relevant slow variables are the pair-
density modes. Starting from the static structure factor,
predictions are then made for different dynamic observables.
Since the structure itself can be obtained from the microscopic
Hamiltonian of the system, the mode-coupling theory can
be regarded as a first-principle approach. In its standard
version it predicts a divergence of transport quantities around
some temperature TMCT which is far above the calorimetric
glass transition temperature Tg. This divergence is not seen
experimentally. In practice, the value of TMCT can be extracted
from quantities like the diffusion constant by fitting D(T ) with
a power law (T − TMCT)−γ for a temperature range above
TMCT. This artificial divergence is typically related to the
factorization approximations, inherent in the mode-coupling
approach. It has been speculated that this approximation
corresponds to a neglect of activated processes [100, 102, 103],
which can be included by additional consideration of current
modes. This would imply a change of the dynamic
mechanism around TMCT. Recently, however, it has been
suggested that these modes are not relevant to avoid the MCT
singularity [98, 104, 105].

However, many non-trivial predictions of the mode-
coupling theory for temperature above TMCT have been
successfully compared with experimental and simulated data.
In particular, the scaling properties of the fast β-relaxation
regime are often in very good agreement with experiments
or simulations [101]. It turns out, however, that the
predictions for the absolute values of quantities like the non-
Gaussian parameters are far too small [106]. Recently,
a generalized version of the mode-coupling theory has
been suggested in which a non-perturbative limit has been
implemented [107]. This approach avoids the divergence
at a finite temperature. Thus, one may speculate that in
this version of the mode-coupling theory activated processes
are somehow included. Furthermore, by adding external
static inhomogeneous potentials dynamic length scales can
be extracted within the MCT formalism, which diverge at
TMCT [108, 109]. It turns out that ξcoll ∝ (T − TMCT)−ν

with ν = 1/4. This yields D(T ) ∝ ξ z
coll with z = 8, in

good agreement with recent numerical data for BMLJ [47];
see section 1. Interestingly, already in old work by Götze and
Sjögren [110] it has been stated that the mode-coupling results
are consistent with a picture of particle motion in an energy
landscape where its dynamics is characterized by an algebraic
waiting time distribution (see also section 7).

Schweizer et al [111–113] use nonlinear Langevin
equations of barrier hopping with a distribution of local
barriers, depending on the respective local structure. In this
way they combine the MCT approach with concepts from
statistical dynamical theories. This approach corresponds to a
dynamically defined landscape. In this way observations such
as violation of the Stokes–Einstein relation can be naturally
described; see below and section 6.4.
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2.2. Characterization of activated processes via
thermodynamic approaches

2.2.1. General. To characterize the rearrangement of
particles in a volume (ξ�)3, comprising N� particles, two
major effects have to be taken into account for estimating the
relaxation rate. First, the rate (T, ξ�) is proportional to the
number of accessible states. This number can be estimated
as exp(N�sc(T )), where sc(T ) is the configurational entropy
per particle; see section 3. This somewhat phenomenological
approach implies that the number of relevant escape paths
from a typical initial state is directly related to the equilibrium
number of accessible final states. Second, the activation
energy V (T, ξ�) determines the energy cost to cross the barrier
between both states. In total one obtains (β = 1/T )

(T, ξ�) ∝ exp(N�sc(T )) exp(−βV (T, ξ�)). (7)

Note that the total relaxation processes can be very complex in
nature and may contain many individual steps. The general
approach explicitly relates thermodynamic and dynamic
properties. Different models differ by the choice of the
activation energy and of the elementary subvolume.

2.2.2. Adam–Gibbs approach. Adam and Gibbs [114]
call an elementary subvolume a cooperatively rearranging
region (CRR). They claim that the system chooses a CRR
by the condition that the configurational entropy sc,CRR(T ) =
N�sc(T ) has a temperature-independent small value B
(e.g. ln 2), i.e. some fixed number of new configurations is
thermodynamically accessible. Since sc(T ) decreases with
decreasing temperature, the size of the CRR increases with
decreasing temperature. The energy barrier is chosen to be
proportional to the volume of the CRR, i.e. proportional to N� .
This assumption is quite ad hoc. As a consequence, one has
V ∝ N� = B/sc(T ). On this basis the relaxation rate can be
written as (BAG ∝ B)

(T ) = 0 exp(−BAG/T sc(T )). (8)

If the configurational entropy sc vanishes at a specific
temperature, thereby defining the Kauzmann temperature TK,
the dynamics would become infinitely slow. The CRRs are
considered to be independent of each other.

To check the quality of the Adam–Gibbs (AG) relation
equation (8), one may compare sc(T ) with D(T ) (which may
be assumed to be proportional to the local relaxation rate (see
section 7)). For simulations a reasonable agreement with the
AG relation can be found for OTP [115], BMLJ [84] (see
figure 13), and for water [116, 117]. However, for BKS-
SiO2 [118] and the Dzugutov liquid [119] D(T )/T rather
than D(T ) fulfills the AG scaling. Experimental data are also
reported to be fitted quite well by equation (8) for sufficiently
low temperatures [120].

One of the central assumptions of the AG relation has
been explicitly checked in [117]. For this purpose the average
cluster size z of the relaxation process has been compared with
1/sc(T ), yielding z − 1 ∝ 1/sc(T ) over a limited range of
temperatures. In later work the Glotzer group has checked

Figure 13. Adam–Gibbs scaling for BMLJ. The AG relation is
fulfilled for different densities. Reprinted by permission from
Macmillan Publishers Ltd: Nature [84] copyright 2001.

that not only cluster sizes but also string sizes fulfill a similar
relation [119]. They claim that strings are better candidates
than clusters because they are smaller in size.

The theoretical foundation of the AG approach has been
critically discussed [14, 121]. Points of criticism are the
purely phenomenological character of the model, the small size
of CRRs at Tg, of the order of a few molecules [122], and
the problem of identifying the configurational entropy sc(T )

with the total excess entropy (glass minus crystal) for the
experimental validation. Furthermore, as argued in [123], it is
possible to construct different model potentials with the same
configuration entropy sc(T ) but with different kinetics. This
somewhat limits the possible generality of equation (8), unless
there exist some subtle relations between the energy scales of
the PEL in real systems (see section 6.3.2).

2.2.3. Kirkpatrick–Thirumalai–Wolynes approach. Kirk-
patrick, Thirumalai and Wolynes have presented some-
what similar ideas but on a much stronger theoretical ba-
sis [124, 125]. Their approach is partly guided by the physics
of mean-field spin-glasses where below a critical temperature
(the analog of TMCT) ergodicity is broken and the system is
trapped close to one of the exponentially large number of
metastable states. For non-mean-field systems like supercooled
liquids one may postulate that a similar freezing effect hap-
pens, albeit with restoration of ergodicity on large timescales
via activated processes.

They denote the separation into elementary subvolumes
the mosaic structure. To estimate V (T, ξ�) they consider the
elementary volume as a droplet, immersed in the surrounding
medium. In contrast to Adam and Gibbs they do not fix the
configurational entropy of the elementary volume but rather
request that (T, ξ�) is a maximum with respect to ξ� ((ξ�)3 ∝
N�). The energetic penalty for rearrangement is assumed to be
mainly due to the surface energy V (T, ξ�) = 4π(ξ�)2σ(ξ�)

with the surface tension σ(ξ�) ∝ (ξ�)−1/2 [125]. The latter
ingredient is based on the random first-order transition (RFOT)
theory. The RFOT theory takes into account the random
contributions to the surface tension which allows the system to
reduce the surface tension for large droplets. This is analogous
to the interface of spin-up and spin-down regions in the random
field Ising model [15, 124]. With this contribution one finally
obtains V (T, ξ�) ∝ (N�)2/3(N�)−1/6 ∝ (N�)1/2. Together
with the entropic term, equation (7), one has to minimize the
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free energy barrier 	F(N�) = γ (N�)1/2 − N�T sc(T ) with
respect to N�. Most likely, transitions will occur on this length
scale. Naturally, at lower temperatures the energetic mismatch
becomes more relevant, which increases the resulting length
scale. With the same argument as above ξ� will diverge for
T → TK. However, whereas in the Adam–Gibbs scenario the
entropy per elementary unit is constant, in the mosaic picture
the entropy per elementary volume increases with decreasing
temperature and also diverges at TK [121]. One obtains for the
minimum free energy barrier

	F� = γ 2

4sc(T )T
. (9)

Formally, this is identical to the AG relation in equation (8).
The value of γ can be estimated from general arguments [125].

In equilibrium the fluctuations of the entropy density are
related to the specific heat [34, 126] via 〈δs2

c 〉 ∝ cp. Here cp

corresponds to the specific heat, related to the configurational
degrees of freedom. Via equation (9), fluctuations in entropy
directly translate into fluctuations of the free energy barrier,
yielding a distribution p(	F). Thus, within this approach the
different parts of the mosaic are described by a distribution
of free energy barriers. Using Gaussian fluctuation theory
and choosing some reasonable assumption for the temperature
dependence of the entropy, it is finally possible to characterize
a glass-forming system by the single parameter cp(Tg).

As a consequence, many relevant observables such as
the fragility as well as the non-exponentiality (based on
the distribution of free energy barriers) can be expressed
in terms of 	cp [125]; see also section 6.4. It turns out
that non-exponentiality and fragility are strongly correlated.
Unfortunately, the degree of non-exponentiality is far too
strong. This can be cured by a modification of the distribution
of free energy barriers 	F . When claiming that all free
energy barriers with 	F > 	F� are shifted to 	F�, a
very good agreement with experimental data is found. The
authors rationalize this modification by possible deviations
from spherical droplet sizes [125] and later on by the presence
of dynamic coupling effects with surrounding regions [15].
This is exactly the mechanism that will be discussed in
section 9.

Another important implication is the relation of the
fragility to thermodynamic properties via the empirically
observed relation [127]

mkin ∝ Tg	cp(Tg)

	Hm
, (10)

where 	cp corresponds to the specific heat difference of
liquid and glass and 	Hm describes the melting enthalpy.
Subsequently, this expression could be derived within the
RFOT approach with a similar prefactor [128].

In the context of the RFOT approach the overlap
distribution of many low-energy states was analyzed for a
Lennard-Jones system at low temperatures [129]. The overlap
of two distributions measures the fraction of particles in the
second structure which is close (defined via some cutoff) to
a particle in the first structure. It turns out that the overlap

distribution is unstructured and similar to the distribution of
liquid states. In contrast, in spin-glass theory one expects
for this quantity a bimodal distribution in the range of one-
step replica symmetry breaking [130]. This is one indication
that the understanding of the glass transition of structural
glasses may be distinct from understanding mean-field spin-
glass behavior. Very recently this question has also been
analyzed in [131]. These authors study the dynamics within
a sphere of variable radius r with fixed boundary conditions.
From the absence of any dramatic dependence on r they
conclude that a critical length scale ξ� cannot be identified
from computer simulations.

2.2.4. Further approaches. Another model, based on
thermodynamic considerations, has been formulated by
Kivelson, Tarjus and others [132]. It is argued that the
immobilization at low temperatures is related to an avoided
second-order phase transition (frustration-limited domain
approach).

From general considerations of the properties of complex
systems as well as the assumption of time–temperature
superposition, Ngai has formulated the coupling model, which
relates the relaxation in the α-relaxation regime to a faster
timescale [133]. In his general scheme he has introduced
three central timescales to characterize cooperative relaxation.
Whereas tc denotes the time from which point on collective
dynamics becomes important, t0 describes the timescale of
microscopic exponential relaxation. Finally, the relaxation
is described by a stretched exponential with timescale τKWW

and non-exponentiality parameter n = 1 − βKWW. From
the continuity requirements he obtains the relation τKWW =
[(1 − n)t−n

c t0]1/(1−n) [133]. This can be used, e.g., to correlate
properties in the β- and α-regime by identifying t0 with the
Johari–Goldstein β-relaxation timescale [133, 134].

A very different class of models relates the energy barrier
of a relaxation process to the elastic properties of the system;
see [14] for an overview. The key idea is that the IS force
constant, determining the local vibrations as well as properties
such as the shear modulus, is proportional to the barrier height
to leave this IS. In this way one can derive a proportionality
between the temperature dependence of the shear modulus G∞
and that of the activation energy. Within a field-theoretical
approach long-wavelength relaxation modes turn out to be
dominant for relaxation [135].

Finally, some workers have also promoted the analysis
of the free energy landscape (FEL) to characterize the glass
transition; see, e.g., [136–140]. For example, one can start with
the Ramakrishnan–Yussouff free energy functional [138]

F(α) = −Fideal gas − (T/2)

∫
d�r

∫
d�r ′[n(�r) − n]

× C(|�r − �r ′|)[n(�r ′) − n] (11)

with
n(�r) ∝

∑
i

exp[−α(�r − �ri )
2] (12)

where the �ri are the positions of the N particles of the system.
Furthermore, C(r) is the direct correlation function of the
liquid [138] and n the average density. Application of this
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functional to the hard-sphere system at different densities
shows that in the limit of high densities the minimum of the
free energy with respect to α is lower than the free energy
of the uniform state. Interestingly, the crossover density ñ
corresponds to the density which is obtained by fitting the
relaxation time to a power law τ ∝ (n − ñ)−γ [138]. This
suggests a relation between the energetics via the free energy
and the resulting dynamics.

2.3. Models about defect motion and facilitated spins

Already in old work by Glarum the idea has been expressed
that the dynamics of defects is a key element for the dynamics
in supercooled liquids [141]. It has been assumed that
the arrival of the defect triggers a local relaxation process.
Unfortunately, for a three-dimensional system a diffusing
defect cannot induce non-exponential behavior [142]. Only if
the defect dynamics can be described by a broad distribution of
waiting times with infinite first moment, stretched exponential
relaxation is obtained [143, 144].

Somewhat similar ideas have been expressed via dynamic
facilitation models, also denoted kinetically constrained
models (KCMs) [145–148]. A real molecular liquid is coarse
grained over a short time period and a small volume. Then
the coarse-grained volume is in one of two possible states
(jammed and unjammed regions—equivalently spin up and
spin down). To account for a temperature dependence of the
fraction of unjammed states one formally attributes a energy
difference to both states so that their ratio is governed by a
Boltzmann distribution. In the limit of zero temperature all
states are jammed. The crucial assumption is that a state can
only switch between both states if at least one neighbor is
unjammed. At low temperatures, where unjammed states are
rare, this basically leads to the picture of moving defects in
the same spirit as the Glarum picture. This defines a length
scale ξdefect as the typical distance between these defects. In
contrast to the previous models, the timescale of relaxation
displays a power law rather than an exponential dependence
on ξdefect. If this class of models indeed describes the physics
of supercooled liquids, the AG relation would be physically
irrelevant because entropy does not play any role here and thus
cannot determine the dynamics. Non-Arrhenius temperature
dependence, and thus fragile systems, are often related to the
East model [146], which is a non-isotropic KCM.

In the spirit of the general questions posed above, the
KCM has a trivial local dynamics if the mobility is non-zero.
The complexity stems from the interaction of adjacent spins
corresponding to adjacent regions of the system, which gives
rise to a dynamic length scale. Thus, ξdefect can be qualitatively
related to the collective length scale ξcoll. It has been checked
in simulations that mobile regions of a glass-forming systems
are indeed spatially correlated [149, 150].

In order to study translational diffusion for the facilitated
spin model a probe molecule was added [148]. Whenever the
site of the probe molecule is mobile it can randomly jump to an
adjacent site. Detailed balance is guaranteed by the condition
that the new site has to be mobile as well. In this way it is
possible to define a probe diffusion constant.

1 3N/2

Figure 14. Sketch of an IS of the toy model discussed in the text.

Some basic questions emerge when trying to describe a
molecular supercooled liquid in terms of a dynamic facilitation
model. Are mobile regions indeed strictly correlated, i.e.,
fulfill the facilitation principle? If yes, a mobile region is
only mobile because it was triggered by an adjacent region
to become mobile. Do strong and fragile systems belong to
different topologies of the phase space? Is there a molecular
basis for the directional persistence of the East model? Does
the bimodality of the local relaxation motion (fast or immobile,
depending on the neighborhood) capture the general physical
features of the local variability of possible transition processes?

In section 9 a model is suggested which combines the
PEL and the facilitation approach and which is derived from
observations for molecular glass-forming systems.

3. Individual inherent structures and
thermodynamics

3.1. Number of inherent structures

Here it is discussed how the absolute number of ISs G∞
N and

the number of adjacent ISs depend on the system size N .

3.1.1. Simple toy models for the PEL. A simple model
to visualize the positions of ISs in the high-dimensional
configuration space is the corners of a hypercube. Each corner
is characterized by series (i1, . . . , iN ) with in ∈ 0, 1 [151]
which is equivalent to spins in a one-dimensional Ising model.
Accepting this mapping one trivially has G∞

N = 2N =
exp(αN) ISs with α = ln 2. The number of ISs with just one
different spin orientation may be interpreted as the number of
adjacent ISs. This is consistent with the locality of transitions
between ISs: its number is exactly N , corresponding to the N
possible spin flips in the related Ising model.

This model suffers from the fact that no particle motion
is involved. Due to the importance of these scaling relations
with the system size N , another simple toy model is briefly
discussed, explicitly based on particles. One considers a one-
dimensional lattice of length 3N/2 (with periodic boundary
conditions) on which N particles are distributed (for reasons
of simplicity one may take N to be even). An IS is defined by
the condition that two adjacent particles are on lattice sites j
and j + 1 or j and j + 2; see figure 14. This condition reflects
the fact that low-energy states typically display a homogeneous
particle density, i.e. do not possess large voids. Of particular
interest is the absolute number of ISs G∞

N as well as the number
of adjacent ISs. For this model an adjacent IS is defined as an
IS which is accessible by the move of only one particle. The
latter condition again reflects the fact that transitions between
ISs occur on a localized spatial scale.

In appendix A it is shown that α = ln 2 − ln N/(2N)

and that the number of adjacent ISs is given by f (N)N with
f (N) = 0.5/(1 − 1/N). Thus, for large N this model has
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the same scaling relations for the total number of ISs and the
number of nearest neighbors as the hypercube model.

One might be tempted to regard the ISs as homogeneously
distributed over the N-dimensional phase space. If this is true,
the N scaling of the number of adjacent ISs should be identical
to the N scaling of the N-dimensional unit sphere, which is
VN ∝ π N/2/(N/2 + 1). This is very different to a simple
N scaling. The reason is that for a homogeneous IS distribution
the locality of this IS transition is neglected.

Recently, a model of aligned 2D hard discs has been
studied, which can also be mapped on a series of 0 and 1 [152].
A more complex but still analytically solvable 1D model has
been analyzed in [153].

3.1.2. General statements. The scaling relations can
also be obtained from more general arguments. The
key assumption is the factorization hypothesis. It states
that for system sizes larger than some critical system
size N∗ the system can be divided into N/N∗independent
subsystems [59, 125, 154–156]. Stated differently, in a
macroscopically huge sample of a glass-forming system the
dynamics of a group of molecules does not influence the
dynamics of another group of molecules, which is 1 m away.
Of course, N∗ can still be a very large number. For short-range
potentials, which are present for molecular glass-formers, this
hypothesis is generally believed to be true. In [156] it has
been strictly demonstrated that even a small interaction among
adjacent subsystems does not change the nature of the results,
obtained from the assumption of independent subsystems. This
hypothesis, e.g., rationalizes why the number of low-energy
excitations such as the tunneling systems (see section 4), is
proportional to the system size. As an immediate consequence
of the factorization hypothesis the number of adjacent ISs
has to be proportional to the system size. Furthermore, for
N > 2N∗ one can write

G∞
N = [G∞

N/2]2. (13)

This functional relation is exactly fulfilled for G∞
N = exp(αN).

These arguments have also been generalized to the number
of saddle points for which the N scaling has been derived
analytically [156, 157]. They are identical to the analogous
question of why the entropy is an extensive observable.

Finally, we introduce G(e) as the number density of
ISs with energy e. For very small systems G(e) can be
obtained from counting. For example, for an LJ system
with N = 32 particles the relevant low-energy ISs have
been identified [158]. For larger systems no systematic
counting is possible and one has to resort to statistical methods
(see below). Nevertheless, via extensive simulations specific
information about the low-energy regions can also be obtained
here [159].

3.2. The partition function

3.2.1. Different contributions to the partition function. First
we consider the configurational part of the partition function

Z(T ) ≡
∫

d �r1 . . . d �rN exp(−βV ( �r1, . . . , �rN ))

≡ exp(−β Atotal(T )). (14)

Atotal denotes the free energy and β = 1/T . The key idea is
to rewrite Z(T ) in terms of contributions from the individual
ISs as well as their corresponding basins of attraction. �i

is defined as the set of points in configuration space which,
upon minimization, end up in inherent structure i with
energy ei . Since the mapping of configurations on inherent
structures via energy minimization is unique (except for a
set of configurations with measure zero, corresponding to the
saddle points of the PEL), the total configuration space can be
decomposed into disjoint partitions �i . A similar reasoning in
the context of broken ergodicity can be found in [160]. Thus
one can write Z(T ) = ∑

Zi(T ), where the Zi(T ) describe the
configurational part of the partition function, restricted to the
basin of attraction of the i th IS, i.e. �i . Zi can be conveniently
rewritten as

Zi = exp(−βei) exp(−β Avib,i ) (15)

stressing the separation of the contributions from the minimum
of basin i itself and the vibrational degrees of freedom. At low
temperatures Avib,i is dominated by the harmonic fluctuations
around the minimum. One may therefore introduce Aharm,i as
the harmonic contribution to the total free energy, i.e.

β Aharm,i(T ) =
3N∑
j=1

ln(βh̄ω j,i) (16)

where ω j,i denotes the j th eigenmode frequency of basin
i . Here we have used the classical partition function of an
harmonic oscillator. Finally, one may write

Zi = exp(−βei) exp(−β Aharm,i (T )) exp(−β Aanh,i (T ))

(17)
where the remaining contribution to Avib,i is denoted Aanh,i ,
i.e. the anharmonic parts of the total free energy. It describes
the deviations from purely harmonic behavior, e.g. by the
influence of the finite size of any basin.

Anticipating that the energy ei is the key parameter which
characterizes the basin i , one may combine all contributions of
inherent structures with the same energy e. It turns out that to
an excellent approximation

exp

(〈
3N∑
j=1

ln(βh̄ω j)

〉′)
≈

〈
exp

3N∑
j=1

ln(βh̄ω j )

〉′
(18)

where the average is over all states with energy e (indicated
by the prime) [161]. Thus one can write for the total partition
function Z(T )

Z(T ) =
∫

de G(e) exp(−β(e + Aharm(e, T ) + Aanh(e, T )))

(19)
with Aharm(e, T ) = 〈Aharm,i(T )〉′ and G(e) defined in
section 3.1. Again, the term Aanh(e, T ) accounts for possible
anharmonic effects.

Via

β Aharm(e, T ) =
〈

3N∑
j=1

ln(h̄ω j/h̄ω0)

〉′
+

〈
3N∑
j=1

ln(βh̄ω0)

〉′

(20)
≡ Fharm(e) + Gharm(T ) (21)
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e βharm < 0 βharm > 0

Figure 15. A sketch of the cases βharm < 0 and βharm > 0. Shown are
typical curvatures around representative ISs at different energies.

β Aharm(e, T ) can be decomposed into an energy-dependent
and a temperature-dependent part. ω0 is some arbitrarily
chosen frequency. This decomposition will be important for
the later analysis. We note in passing that recently the partition
function has been extended to take into account contributions
from regions around saddles [162].

Fharm(e) is easily accessible by first calculating and
then diagonalizing the Hessian matrix in different ISs. For
different systems it has been shown in this way that to a very
good approximation one has a linear energy dependence for
Fharm(e) [84, 115, 163–167], i.e.

Fharm(e) = const − βharme. (22)

The constant βharm is a material constant. The meaning of the
sign of βharm is visualized in figure 15. Then in the harmonic
approximation the vibrational entropy can be written as

Sharm(e) = N[const + 3 ln(β)] + βharme. (23)

Via the standard procedure of thermodynamic integration
Atot(T ) or, equivalently, Z(T ) can also be numerically
determined starting from the ideal gas limit [163, 168–170] or
from the harmonic low-temperature limit [170]. Furthermore,
advanced simulation algorithms have been employed to
calculate the density of states at rather low energies [171, 172].

3.3. Thermodynamic properties

3.3.1. Boltzmann probability. The normalized integrand

peq(e, T ) = G(e) exp(−β(e + Aharm(e, T )

+ Aanh(e, T )))/Z(T ) (24)

denotes the temperature-dependent probability that an equilib-
rium configuration at temperature T is related to an IS with en-
ergy e. In what follows the temperature argument in peq(e, T )

will be simply omitted, i.e. peq(e, T ) → peq(e).
According to the Weber–Stillinger procedure the proba-

bility peq(e) can be obtained if during a MD simulation the
configurations are quenched in regular time intervals and the
distribution of the corresponding IS energies e is recorded. In
what follows we indicate the procedures which are necessary
to finally obtain G(e).

To relate the IS distribution G(e) and peq(e) one
has, strictly speaking, to take into account the anharmonic
effects [11]. At low temperatures they become less relevant.
Formally one has β Aanh(e, T → 0) = 0 because only the
harmonic part matters. In contrast, if regions of the basins
of attraction beyond the harmonic part start to be populated
significantly (e.g. regions close to barriers), anharmonic effects
may become visible. Exactly, if Aanh(e, T ) either disappears or
only depends on temperature one has

peq(e) ∝ G(e) exp(−βe) exp(−Fharm(e)) (25)

or, equivalently,

Geff(e) ≡ G(e) exp(−Fharm(e)) ∝ peq(e) exp(βe), (26)

with a temperature-dependent proportionality constant. This
allows one to obtain the energy dependence of Geff(e)
(and thus via knowledge of Fharm(e) that of G(e)) with
a straightforward reweighting method; see, e.g. [173] for
application of this method in Monte Carlo simulations.
For every temperature, peq(e) is multiplied by the inverse
Boltzmann factor. After relative scaling, the energy
dependence of G(e) can be constructed successively. It is
crucial to perform this analysis for a large number of different
temperatures in order to have sufficient overlap between the
energy range of different temperatures.

Note that the above argument can be reversed. If the
rescaling procedure of peq(e) yields a well defined curve G(e)
the energy dependence of Aanh(e, T ) can be neglected. This
question is of crucial importance because anharmonicities have
to be small (or even better to vanish) so that the physics is
indeed governed by the properties of the IS. In general, the
harmonic approximation means that anharmonic effects are
neglected.

Finally, equation (22) allows one to rewrite equation (26)
as

peq(e) ∝ Geff(e) exp(−βe) ∝ G(e) exp(−(β − βharm)e).
(27)

3.3.2. Configurational entropy. Sc(e) = ln G(e) is the
energy-dependent configurational entropy. To calculate the
entropy in the canonical ensemble one can start with the
general expression Sc(T ) = − ∑

i pi ln pi , summing over all
states. For a continuous energy distribution this translates into

Sc(T ) =
∫

de peq(e) ln(G(e)/peq(e)) =
∫

de peq(e)Sc(e)

−
∫

de peq(e) ln peq(e). (28)

The last term is often neglected. Additional, very small terms
emerge if the variations of the harmonic contributions for states
with the same IS energy e are taken into account, i.e. going
beyond the approximation equation (18).

Furthermore, one can define the average energy 〈e(T )〉 via

〈e(T )〉 =
∫

de e p(e, T ). (29)
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Figure 16. The distribution G(e) of inherent structures in BMLJ [53] and BKS-SiO2 [175], obtained from reweighting at different
temperatures. The inset show the temperature dependence of the average IS energy. The straight lines correspond to the prediction for a
Gaussian G(e).

In the thermodynamic limit Sc(T ) is exclusively related to
the first term in equation (28). Furthermore, fluctuations can be
neglected so that one can approximate peq(e) = δ(e−〈e(T )〉).
This yields

Sc(T ) ≡ Sc(〈e(T )〉). (30)

In the equilibrium situation the free energy −T [Sc(e) −
βe + βharme] + const(T ) is a minimum with respect to energy.
This yields (in the harmonic approximation)

∂Sc(e)

∂e
= β − βharm. (31)

Expressing the configurational entropy in terms of temperature
rather than energy directly yields

dSc(T )/dT = (β − βharm) d〈e(T )〉/dT . (32)

This shows a direct relation between the temperature
dependence of the configurational entropy and that of the
average energy. Note that in the Adam–Gibbs theory
the T -dependent configurational entropy Sc(T ) is of major
importance.

Finally, it is interesting to note that the thermodynamics of
glasses can also be calculated via analytical means [169, 174].

3.4. Simulation results

Starting from peq(e) as determined for different temperatures
one can use equation (26) to determine both Geff(e) and G(e).
The results for BMLJ and BKS-SiO2 are shown in figure 16.

It turns out that the reweighting yields a well defined
function G(e). This means that for temperatures smaller than
2TMCT for BMLJ and 5000 K for BKS-SiO2 the anharmonic
contributions do not hamper the reweighting analysis. Of
course, in the high-temperature limit the system has to leave the
harmonic regime due to the finite size of the IS in configuration
space. Formally, in the limit of infinite temperatures one
approaches the ideal gas limit, implying that the potential is
equivalent to a box potential and the negative anharmonic
contributions to the specific heat exactly cancel the harmonic
contribution [164]. Actually, for BMLJ and BKS-SiO2 the
effect of anharmonic contributions is indeed seen for even
higher temperatures.

This does not mean that anharmonic contributions are
not present at lower temperatures. For the case of BKS-
SiO2 this is explicitly shown in figure 17, where the
different contributions to the total entropy S(T ) are shown.
Beyond the configurational entropy Sc(T ) the harmonic
contributions Sharm(T ) have been determined. The remaining
difference Sanh(T ) = S(T ) − Sc(T ) − Sharm(T ) is due to
anharmonic effects. One can clearly see that even at the
lowest temperatures, accessible via computer simulations, the
anharmonic contributions are still present. However, they do
not hamper the determination of Geff(e) and G(e) via the
reweighting method. According to above this implies that the
energy-dependence of Aanh(e, T ) must be weak.

Most importantly, Geff(e) turns out to be Gaussian, i.e.

Geff(e) ∝ exp(−(e − e0,eff)
2/2σ 2). (33)

Together with equation (27) this implies

G(e) = exp(αN)
1√

2πσ 2
exp(−(e − e0)

2/2σ 2) (34)

with e0,eff = e0 + βharmσ 2. Note that Geff(e) rather than G(e)
determines the Boltzmann distribution.

In the harmonic approximation 〈e(T )〉 is given by

〈e(T )〉 = e0,eff − βσ 2 (35)

which yields a straight line in the 〈e(T )〉 versus 1/T
representation. The numerical data are indeed consistent with
this relation for BMLJ; see figure 16. This is just a different
representation of the data shown in figure 6. On first sight
the constant value for 〈e(T )〉 for T > 1 might indicate that
the top of the PEL has been reached. However, the presence
of a Gaussian distribution nearly up to the maximum implies
that this interpretation is not correct. Rather, it reflects the
dominance of anharmonic contributions as seen, e.g., from
deviations when performing the reweighting analysis for T >

1 [164].
Of particular interest is the resulting configurational

entropy for the Gaussian distribution. Using equation (28) one
obtains

Sc(T ) = Nα − (1/2)σ 2 (β − βharm)2 . (36)
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Figure 17. The different contributions to the entropy for BKS-SiO2 at different densities. Reprinted by permission from Macmillan Publishers
Ltd: Nature [116] copyright 2001.

For large N one expects that σ 2 ∝ N due to the central limit
theorem. Then Sc(T ) becomes extensive as expected.

Formally, one can define the Kauzmann temperature TK

from the condition Sc(TK) = 0, yielding [24, 176]

1/TK = √
2αN/σ + βharm. (37)

At this temperature one has

〈e(TK)〉 = e0 − √
2αNσ. (38)

With the definition of TK, equation (36) can be
equivalently expressed as

T Sc(T ) = [(Nα) + σ 2ββK/2 − σ 2β2
harm/2](T − TK). (39)

Neglecting the temperature dependence of the second term this
is equivalent to the VFT-relation equation (5) when identifying
T0 with TK and starting with the Adam–Gibbs relation (8) [84].
Using a similar way of rewriting the configurational entropy,
this type of argument can be already found in [84]. In any
event, for the further analysis we use expression (36) rather
than (39) due to its simplicity.

The IS distribution of BKS-SiO2 was first extensively
analyzed in [68, 116, 118]. In that work deviations of
〈e(T )〉 from the 1/T behavior have been observed in the
low-temperature limit, implying non-Gaussian contributions.
To clarify the underlying reason for these observations,
simulations for a small system (N = 99) have been
performed [175]. It turned out from the reweighting analysis
that G(e) is Gaussian with a relatively sharp cutoff; see
figure 16. The resulting thermodynamics of this small system
agrees with that of larger systems (e.g. in terms of 〈e(T )〉).
Around the cutoff the entropy is still finite, implying a high
degeneracy of these states. Interestingly, configurations in this
energy range are void of defects, distorting the local tetrahedral

structure, whereas with increasing energy the average number
of defects also increases. Thus, the mechanism of energy
reduction by decreasing local defects has to stop when
the perfect tetrahedral network structure is reached. This
rationalizes the presence of a low-energy cutoff and shows that
this cutoff is very likely a direct consequence of the network
structure [175]. Similar reasoning was put forward by Angell a
long time ago [177]. High-density BKS-SiO2 does not possess
a well defined network. Correspondingly, the indication of a
low-energy cutoff also vanishes [118]. As discussed further
below, this cutoff is directly responsible for the non-Arrhenius
to Arrhenius crossover around T = 3500 K and thus to the
strong behavior of SiO2. It was already suggested in [165]
that the non-Arrhenius to Arrhenius crossover has its origin in
structural reasons based on the network properties.

In the temperature range of water simulations (SPC/E)
one observes Sc(T ) which is compatible with a Gaussian
picture [165]. It is speculated, however, that deviations
might occur for lower temperatures to rationalize a possible
non-Arrhenius to Arrhenius transition [178]. Also for the
molecular glass-former OTP a Gaussian energy distribution
has been observed [179]. In contrast, for another model
system with translational and rotational degrees of freedom
one has found two different regimes where 〈e(T )〉 scales with
1/T . Interestingly, close to the crossover temperature the
coupling between rotational and translational dynamics breaks
down [180].

The characteristic values for the PEL parameters of BMLJ
and BKS-SiO2 are given in section 5. Here we just note
that typical values of α are close to unity. For the very
fragile system OTP, α has been experimentally estimated to
be 13 [181]. Thus, one may speculate that α is larger
for more fragile systems. Interestingly, α approaches zero
when compressing a glass-forming system [87]. Whereas
for BKS-SiO2 the energy dependence of aharm(e) can be
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neglected, i.e. βharm = 0, there is a dependence for
BMLJ. Interestingly, here the sign of βharm changes when
going from constant-volume (βharm < 0) to constant-pressure
(βharm > 0) conditions [85]. A possible explanation is
as follows: high-energy states possess several unfavorable
repulsive interactions. As a consequence, it is particularly
favorable for the system to expand. In turn, the force constants
will on average become smaller for the high-energy states at
constant pressure, i.e. variable volume.

In general, all properties such as the free energies can be
determined for different densities of the system. In particular
they can be parametrized in terms of PEL properties [182]. In
this way one can, e.g., express the equation of state in terms of
PEL properties.

3.5. Properties of energy distributions

As mentioned above, many systems are compatible with a
Gaussian distribution G(e). Qualitatively, the total energy can
be regarded as a sum of many different contributions xi . If
one assumes that the different contributions are described by a
probability function r(xi) (which, for reasons of simplicity, is
taken as identical for all xi ), the resulting distribution for the
total energy G(e) can be expressed in terms of the different
moments of r(xi). In general, r(xi) will be non-Gaussian.
In the most extreme case it would be described as a bimodal
distribution, reflecting, e.g., the presence of local excitations.
The dominant contributions to G(e) stem from the second
moment (assuming that r(xi) is symmetric) of r(xi) and the
non-Gaussian parameter α2, reflecting the fourth moment. It
turns out for BMLJ that the degree of Gaussianity of G(e) is
so prominent that α2 must be very small [183]. Thus, already
on the local level the distribution r(xi) needs to be close to a
Gaussian.

For the calculation of Sc(T ) in equation (36) it has been
assumed that G(e) is Gaussian up to e = −∞. This is,
of course, unphysical because finally the lowest energy state
with energy ecut (excluding the crystalline states) must have
been reached. This energy is, to first approximation, given by
〈e(TK)〉 with TK defined by equation (37).

The behavior of Sc(e) for e close to ecut can, in
principle, have different energy dependences. There is,
however, a generic limit for the case where r(xi) contains a
ground state and a first exited state, differing by an energy
	e. If one assumes for simplicity that the system under
consideration is composed of a superposition of M � 1
independent subsystems (each having a ground state of energy
ecut/M) [184] then the contributions to ecut + K	e result from
excitations in K subsystems. Thus,

Sc(ecut + K	e) = Sc(ecut) + ln

(
M
K

)

≈ Sc(ecut) − K ln(K/M) + K (40)

yielding

Sc(e) = Sc(ecut) − e − ecut

	e
ln

(
e − ecut

M	e

)
+ e − ecut

	e
. (41)

Additional harmonic contributions just modify the prefactor of
the last term. The corresponding equation for Sc(T ) in this

limit can be easily obtained. For low temperatures (β	e � 1)
a straightforward calculation gives

Sc(T ) = Nβ	e exp(−β	e). (42)

A bimodal energy distribution has also been discussed
in [185]. More generally, both levels have been broadened
and the excitation energy has been rendered temperature
dependent (two-Gaussian excitation model). Whereas this
cannot describe a system at constant volume (because G(e) is
temperature independent), this may be an appropriate model
description to account for possible volume and thus energy
variations at constant pressure ensemble when the excited level
is populated at higher temperatures.

An explicit example for this scenario is given in [186, 187],
where a hard-sphere model with additional constraints is intro-
duced. These constraints limit the maximum number of bonds
and are supposed to reflect the properties of strong liquids. For
this model 	e is equal to half of the binding energy of adjacent
hard spheres, which itself is identical to the activation energy
of diffusion. Naturally, diffusion occurs by simple and inde-
pendent bond breaking processes. The authors suggest that the
PEL of that model reflects the properties of SiO2. One may
ask whether the entropy, presented in figure 16, can be indeed
described in this way. Unfortunately, due to the large number
of fitting parameters as well as numerical uncertainties close to
ecut it is not possible to distinguish equation (41) from differ-
ent mathematical forms. Going back to the physical interpre-
tation the validity of equation (41) implies that (i) the energy
range for which deviations from a Gaussian distribution are ex-
pected is at least of the order of 	e and (ii) for e � ecut + 	e
most if not all configurations should contain at least one de-
fect. Choosing ecut = −1910.5 eV and 	e = 2.4 eV (half
of the macroscopic activation energy), one finds for the simu-
lated IS that for e = −1908.1 eV only one out of eight con-
figurations (on average) contains one defect, i.e. a silicon atom
bound to three or five oxygen atoms. Stated differently, for the
BKS-SiO2 system the energy distribution of defect-free config-
urations is broader than 	e. Thus, the shape of G(e) and Sc(e)
close to ecut is not dominated by the presence of defect states
but rather by the additional disorder, reflected, e.g., by the ring
statistics [188].

If (i) a macroscopic system can be described as a
superposition of independent subsystems of finite size for all
temperatures and (ii) finite-size systems contain a finite number
of ISs, then from the very definition of the configurational
entropy one has Sc(T ) > 0 for T > 0. Explicit calculations
for the properties of finite systems at very low temperatures
can be found, e.g., in [176]. Then, a finite Kauzmann
temperature does not exist. A similar argument has been
presented by Stillinger [189]. The basic assumption is that
for an amorphous ground state there exist many independent
excitations; see section 4, where the tunneling model is
discussed, which implies the presence of these excitations.
In spirit, this is similar to the decomposition property used
above. Then one ends up (in the thermodynamic limit) with
an entropy of the form of equation (41). In particular, one
has lime→ecut dSc(e)/de = ∞. This implies (see (31)) that the
temperature for which 〈e〉 = ecut and thus Sc(T ) = 0 is T = 0.
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Figure 18. Probability pB B(T ) that the IS, related to an equilibrium
configuration at temperature T , changes if the configuration is
randomly shifted by a small amount. Reprinted with permission
from [53]. Copyright 2003 by the American Physical Society.

Some subtle effects, arising from the harmonic contributions,
are discussed in [190].

In agreement with these results, it has been shown in [184]
that the assumption of a Gaussian up to its low-energy end is
not consistent with the notion that the number of excitations,
starting from the lowest-energy state, have the scale with the
system size. Furthermore, the strict simultaneous validity of
the Adam–Gibbs and the VFT relation requires a hyperbolic
density [24]

G(e) ∝ exp[1 − exp(−2(e − ecut)/e0)]. (43)

3.6. Population of barriers

So far, the properties of the IS distribution G(e) and the
related Boltzmann probability peq(e) and (in section 2.3) the
possible relevance of the population of saddles for intermediate
temperatures (T > TMCT) have been discussed. One way to
quantify the population of barriers has been reported in [53, 76]
for BMLJ. It has been checked whether an equilibrium
configuration ends up in the same IS after quenching if some
of its particles are randomly shifted by a small amount; see
figure 18. From repeated simulations with different initial
configurations and initial translations one can determine the
probability pB B that the pair of ISs is not identical. On a
qualitative level, pB B is a measure for the probability that
the system resides close to a saddle. Interestingly, pB B does
not disappear for TMCT but rather shows a simple Arrhenius
law [53, 76]. This suggests that nothing special happens around
TMCT. Note that pB B is also a measure for the average index
number; see section 2.3. Furthermore, if plotting pB B versus
temperature in a linear representation one may be erroneously
tempted to conclude that pB B vanishes close to T ≈ TMCT [53].

4. Local dynamics on the PEL

4.1. Pairs of inherent structures—low-temperature anomalies

4.1.1. Physics of tunneling states. For temperatures in
the Kelvin regime glasses display anomalous properties as

compared to their crystalline counterparts. For example the
specific heat has a linear rather than a cubic temperature
dependence as one would expect from the Debye theory of
solids. This implies that additional contributions to the specific
heat must be present in glasses.

In the tunneling model [78–80], as well as in its
generalization, the soft-potential model [191–194], it is
postulated that via local rearrangements of a few atoms or
molecules a transition between two adjacent ISs is possible.
Conveniently, this pair of ISs is denoted a double-well potential
(DWP). In disordered systems for temperatures significantly
below Tg local relaxation processes are due to the presence of
these DWPs. For temperatures in the Kelvin regime the system
can no longer classically cross the saddle and dynamical
processes are related to tunneling rather than to activated
dynamics. Of course, only for DWPs with a sufficiently small
relaxation time (e.g. less than seconds) and a small asymmetry
(e.g. less than 2 K) can the system tunnel between both states
on typical experimental timescales. These specific DWPs are
denoted tunneling systems.

This model is purely phenomenological and very
successful to explain the different low-temperature anomalies
in a consistent manner [80, 195]. Naturally, many important
questions emerge about the microscopic nature of the tunneling
systems as well as their role as part of the PEL. This has been
clarified via computer simulations. A review on this topic can
be found in [196].

4.1.2. Simulation results. To test the tunneling model for real
glass-forming systems via computer simulations, one first has
to systematically identify pairs of adjacent ISs which may act
as tunneling systems. In practice it is very difficult to directly
identify pairs of ISs with an asymmetry less than 1 K. The
typical energy ranges for systems like silica are of the order
of 1 eV so that only one tunneling system per one million
SiO2 tetrahedra is present [197].

It is possible, however, to extract the relevant properties of
the tunneling systems from the pairs of minima with a larger
asymmetry of, e.g., 1500 K for SiO2 [197–199]. For this
purpose the potential energy around one minimum of a DWP
is written as

VDWP(x) =
4∑

i=2

wi x
i (44)

where the wi are determined by the condition that the
asymmetry, the barrier height and the distance between both
minima of the DWP is recovered. x is the coordinate,
parametrizing the reaction path between both minima.
Characterization of local potentials by quartic potentials has
been inspired by the soft-potential model [191]. In agreement
with the assumptions of the soft-potential model it turns out
that the wi are statistically independent [196]. Thus the set of
DWPs allows one, in the first step, to extract the distributions
pi(wi ) and, in the second step, to generate the distribution
of tunneling systems with the correct statistics. In figure 19
the distribution of barrier heights for the DWPs and for the
tunneling systems is shown. The specific parameters such as
barrier heights display a broad distribution. The typical energy
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Figure 19. In the upper panel the distribution of barrier heights is
shown for the DWPs, found during a systematic search procedure for
BKS-SiO2. The curve is peaked for barriers around 500 K.
Furthermore, it is shown how the distance between both minima of
the DWPs is correlated with the potential height. It turns out that all
three parameters of the DWPs, i.e. asymmetry, potential height and
distance, are positively correlated. It is possible via the
parametrization method to extract the distribution of tunneling
systems (DWPs with asymmetry < 2 K and relaxation time < 1 s)
from this set of DWPs. The resulting distribution of barrier heights is
shown in the lower panel. The typical barrier heights and distances of
the tunneling systems are significantly smaller as compared to the
DWPs. Adapted with permission from [197]. Copyright 2005 by the
American Physical Society.

scales of the potential heights of tunneling systems (around
50 K) is significantly smaller than 1 eV, i.e. the typical energy
scale on the PEL. Thus these tunneling systems correspond to
little wiggles on the PEL.

In previous work on silica the trajectories, generated
either by molecular dynamics [200] or by activation–
relaxation techniques [201], have been analyzed with respect
to transitions between adjacent configurations. Although an
interesting insight into the nature of relaxation processes in
silica is available from these simulations it is not possible
to derive, e.g., the absolute number of DWPs, relevant for
the low-temperature anomalies. Such an algorithm has been
suggested in [196, 197, 202, 203]. For silica the experimentally
determined number of tunneling systems is roughly three times
larger than the value found from simulations of defect-free
silica (i.e. taking into account only those ISs with a perfect
local tetrahedral structure). This discrepancy can be easily
explained by the fact that in experiments one has additional
contributions from impurities and local defects like non-
bridging oxygens. Furthermore, the dipole moment has been
determined for the tunneling systems in pure SiO2 and for the
additional presence of impurities. In both cases an excellent
agreement with experimental data has been obtained [199].

In the more general context of this review, one may
ask the question of whether the properties of pairs of
adjacent minima depend on the energies of the ISs which
are involved. This question is important for two different
reasons. First, generation of glassy configurations via
computer simulations involves very large cooling rates [204].
As a consequence, the energies of the ISs obtained via
simulations are always higher in energy than those one would

Figure 20. The dependence of the number of DWPs per starting
minimum on its energy for different constraints on the distance for
the BMLJ system with system size N = 65. LJ units are used. The
asymmetry was constrained to a value smaller than 0.8. Adapted
with permission from [198]. Copyright 2004 by the American
Physical Society.

get with experimentally relevant cooling rates. Thus any
dependence of the DWP properties on energy would translate
into systematic differences between the tunneling systems,
obtained via simulations, and those observed experimentally.
Second, as discussed in the last section the density of ISs,
i.e. G(e), exponentially increases with increasing energy. Thus
one might speculate that the number of pairs of ISs with
energies e0 and e1 (where |e1 −e0| is small relative to the width
of the IS energy distribution) strongly increases with increasing
energy.

From detailed simulations of the BMLJ system it turns
out that the properties of the DWP are basically independent
of the IS energy [198]. Thus, it is indeed possible to
obtain a realistic picture of tunneling systems via computer
simulations. As shown in figure 20 the absolute number of
DWPs is also independent of energy as long as the DWPs are
restricted to pairs of ISs with very small (Euclidean) distances
in configuration space. For a weaker distance criterion of
0.8 (in Lennard-Jones units) one observes a slight increase of
the number of DWPs with energy. The typical distance of
tunneling systems in the BMLJ system is 0.1 [203], so that
the number of tunneling systems is independent of the energy
of the PEL.

Since for sufficiently large systems the number of adjacent
ISs scales with the system size N , the number of adjacent ISs
can be much larger than one. Actually, this is already the case
for the system size of 65 particles, analyzed in [198]. For a
few instances a lower bound for the number of neighbors has
been obtained by performing repeated simulations for the same
starting IS and checking the nature of the first IS visited after
escaping the starting IS. For a few low-energy ISs it turned out
that the number was of the order of 10 (again for N = 65
particles).

DWPs have also been numerically identified for clusters
in [205]. Interestingly, it turns out that for clusters the most
mobile particles are typically at the surface. Thus, it has to
be expected that DWPs in clusters have somewhat different
properties from those in bulk systems.

Middleton and Wales have performed an extensive
analysis of IS transitions for glass-forming systems [159].
To characterize the different transitions they analyzed the
translation of the particle which moves most. If this distance
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is less than half the average distance between particles
they denote the translation as a non-diffusive rearrangement,
otherwise as diffusive. Furthermore they observed a broad
distribution of barriers, similar to figure 19. Transitions
with low barriers typically correspond to non-diffusive
rearrangements and vice versa. Furthermore, low-barrier
transitions are more cooperative [206]. This result is fully
consistent with the insight from [197, 202].

4.2. Escape from an IS: concepts

4.2.1. General. In section 1 evidence has been presented that
the dynamics is strongly related to the energy. In particular,
as illustrated in figure 7, the system is stuck for a long
time in low-energy states. As will be shown below, the
macroscopic transport properties are to a large extent related
to the residences in these stable configurations. Therefore it is
of utmost importance to understand the escape from an IS. Two
aspects have to be taken into account. First, a typical IS will
have several adjacent ISs. Therefore, many escape paths are
possible. They all have to be taken into account to predict the
escape dynamics. Second, after escaping to the first adjacent
IS there is a finite backjump probability to return to the initial
IS. This backjump probability will be particularly pronounced
if the initial IS is very low in energy and the adjacent ISs have a
higher energy. Thus, in particular at low temperatures one can
expect that the system is returning to the initial IS quite often.
For the long-range transport it is important that the system
leaves an IS irreversibly. Therefore, it is convenient to define
the waiting time in the initial IS as the time difference between
the starting time and the time when the system leaves this IS
for the last time. Due to the exponentially large number of ISs
a much later return to the same IS can be safely excluded, so
that the waiting time is a well defined observable. Is it possible
to relate the local properties of the PEL to the waiting time?

In the physical chemistry literature the formulation of rate
equations for a PEL with many ISs has been an important
topic; see, e.g., [207] and the references in [10]. Only if the
system resides long enough close to the individual IS may
the system be regarded as Markovian. This implies that the
future dynamics does not depend on how the system entered
the present IS. Then straightforward rate equations can be
formulated. This limit will be considered in the subsequent
analysis. For reasons of simplicity the transition rate from
state i to state j is just taken as k0 exp(−Vi j) with a common
prefactor k0 and the barrier height Vi j the system has to cross
on the way from i to j .

4.2.2. Analysis of model PEL. A priori it seems to be a
very complex problem to calculate the escape rate from some
groups of minima because a very large set of rate equations
has to be solved. Indeed, often only numerical solutions are
available [208]. However, despite the complexity of the PEL
of glass-forming systems some quantitative predictions can
be formulated for the typical situation encountered in glass-
forming systems. Specifically, we analyze the waiting time
of a low-energy IS (central IS) which is surrounded by ISs
with higher energies. In general, it will be impossible to

Figure 21. Sketch of a simple model PEL. The constant energy
distance between neighboring ISs is denoted 	e. On the mth level
the degeneracy is z(m), which here is chosen as z(m) = m2. The
different energy levels are denoted 0, . . . , n. The transition rate for
an upward transition from an IS at level m to any IS at level m + 1 is
0zm+1 exp(−β	e). The downward rate is 0. The waiting time is
defined as the average time which is needed for the system to escape
from the central IS at level 0 to one IS at level n.

elucidate the local properties of the PEL in such detail that
observables like the waiting time of the central IS can be
predicted quantitatively. First, the number of ISs which may
contribute is simply too large. Whereas it may be possible
to identify all nearest-neighbor ISs as done for the systematic
search of tunneling systems, it will not be possible to extend
this search to all ISs which are, e.g., fourth-nearest neighbors.
Second, even if one had this information one would have to
solve a very high-dimensional system of rate equations.

Despite these general problems, it is nevertheless possible
to make quantitative statements. Some key concepts can be
discussed for the model landscape in figure 21. It is similar
to the landscape studied in [209]. For very large n one may
expect that the probability to go back to the bottom of the
PEL is very small once some level 1 
 m < n has been
reached. Qualitatively, this may be attributed to the fact that the
probability to proceed to ISs with higher energies is sufficiently
large that it is more likely to end up at level n rather than at
the central IS, i.e. at level 0. In some sense this argument
reflects the counter-effects of energy and entropy. Whereas
for energetic reasons the system would like to climb down in
energy, the large degeneracy of the ISs at the next higher energy
and thus the large number of options to go up may reduce the
energetic driving force.

On a more quantitative basis, this effect is captured by
the backward-jump probability pback(m). It is defined as the
probability that the system, starting at level m, will reach the
bottom, i.e. level 0, before escaping, i.e. reaching level n. We
define that exactly for levels m with pback(m) > 0.5 the system
is still in the attraction basin of the central IS. mc defines
the level for which for the first time pback < 0.5. Due to
the relevance of energetic aspects at low temperatures, one
may expect that mc increases with decreasing temperature.
This concept has also been used in the field of protein
dynamics to identify the range of transition states before
folding [210]. Furthermore, it is similar to the dynamic
bottlenecks introduced by Chandler and co-workers [211].
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Figure 22. The apparent activation energy Eapp for the cases
mc = n − 1 and mc = n − 2 for the model shown in figure 21 for
different values of n. The lines correspond to Eapp = mc	e.

To characterize the temperature dependence of the waiting
time 〈τ 〉 in the central IS, we define the apparent activation
energy

Eapp = d ln〈τ 〉
dβ

. (45)

In general, Eapp depends on temperature. Intuitively, one may
expect that the value of Eapp is related to the height of the levels
from which point on the system starts to leave the attraction
basin of the central IS. In analogy to the results in [209],
this hypothesis can be quantified for the model potential in
figure 21. In a first step the temperature dependence of the
average waiting time is calculated by performing repeated MC
simulations, starting from the central IS and recording the time
until level n is reached. Then Eapp(β) can be directly estimated
via equation (45). Alternatively, for fixed temperature one can
calculate pback(m) by repeated MC simulations, starting from
level m and recording the probability to end up at the central
IS before reaching level n. Eapp can be estimated as 	emc,
where mc is the level for which pback(mc) ≈ 0.5. In figure 22,
data are shown for two temperatures, implicitly defined via
mc = n − 1 and mc = n − 2. Furthermore, different values
of n are considered. Indeed, both estimates of Eapp agree
very well. For all model landscapes analyzed so far, we get
similar results. This strongly suggests that the quantity pback

contains important information about the local escape rates
from a central IS.

It is also possible to obtain analytical results in the limit
where z(m) very strongly increases with m [53, 209], which
will be needed for the elucidation of PEL properties via
computer simulations. To obtain a somewhat more general
expression we introduce the barrier Vm,m+1 which the system
has to cross when jumping from level m to m+1. Naturally one
has Vm,m+1 − Vm+1,m = 	e. To proceed further we define the
probability pret(m) to jump back from level m to level m − 1.
It is given by

pret(m) = exp(−βVm,m−1)

exp(−βVm,m−1) + zm+1 exp(−βVm,m+1)
. (46)

In the limit that z(m) very strongly increases with m the
return probability is close to unity for m < mc, and very

small for m � mc. Then an escape process from level
0 to mc corresponds to a fortunate sequence of unlikely
upward jumps, each occurring with probability 1 − pret(m).
The statistical weight of sequences which contain correlated
forward–backward jump processes (not involving level 0)
can then be neglected. This is similar to the observation
that a particle when crossing a saddle after leaving a deep
minimum displays a very fast uphill motion. Of course,
for jump processes from level mc up to the final level
n the return probability is very small so that the forward
motion will continue. Furthermore, for the waiting time 〈τ 〉
the contribution to the residences in excited levels can be
neglected. This comes from the observation that for an escape
from the central IS one only has uphill processes whereas for
all excited levels a downhill process is also possible. Putting
these arguments together one can thus estimate the inverse
average waiting time as the rate τ−1

microz1 exp(−βV0,1) to leave
level 0 multiplied by the probability that the system performs
successive uphill processes 1 → 2, . . . , (mc − 1) → mc

〈τ 〉−1 = τ−1
microz1 exp(−βV0,1)

× (1 − pret(1)) · . . . · (1 − pret(mc − 1)). (47)

Note that for 1 − pret(m) 
 1 one has 1 − pret(m) ≈
zm+1 exp(−β(Vm,m+1 − Vm,m−1)). Then one obtains after a
straightforward calculation

〈τ 〉−1 = τ−1
micro

mc∏
m=1

zm exp(−β[(mc−1)	e+Vmc−1,mc ]). (48)

In particular, this result means that the apparent activation
energy will vary from (n − 1)	e + Vn−1,n at very low
temperatures (where mc = n) to V0,1 (where mc = 1) at very
high temperatures. Also note that there is an increase of the
apparent attempt frequency by a factor z1 ·. . .·zmc . We mention
in passing that equation (47) can be reformulated as

d ln〈τ 〉/dβ = V0,1 +
∑

m<mc

pret(m)(Vm,m+1 − Vm,m−1). (49)

Equation (48) allows one to formulate a simple recipe to
identify Eapp from properties of the PEL. For this purpose,
one monitors the final escape process from a central IS and
records the energies of the sequence of ISs and the saddle
energies between them. Furthermore, one determines pback

from repeated runs starting from these ISs. Then one may
first determine mc from the pback-criterion and finally estimate
Eapp as the energy difference between the energy of the saddle
between levels mc − 1 and mc and the energy of the central IS.

These arguments can be extended to the PEL where the
states at the different levels are no longer degenerate so that
the probabilities to climb up the different paths may vary. The
number of paths is equivalent to the number of ISs on level
n. The different ISs on this level may be distinguished by the
index a. Then the total rate to leave the central IS  ≡ 1/〈τ 〉
can be written as

∑
a a , where a is the rate at which the

system escapes the central IS via this specific IS with index a.
One can write

d ln〈τ 〉
dβ

= −d ln 

dβ
= −

∑
a

a



d ln a

dβ
=

∑
a

pa E0.5,a.

(50)
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Figure 23. Mean waiting times of four low-lying, randomly selected
ISs, computed from repeated runs for the BMLJ system. The
activation energies, obtained from the Arrhenius fit, are indicated.
Curves have been shifted by 0.5(4-i) orders of magnitude for better
visualization. Reproduced with permission from [53]. Copyright
2003 by the American Physical Society.

Here we have introduced pa as the probability to escape via
path a and E0.5,a as the value of the effective barrier for path a
according to the pback-criterion. They can be estimated in full
analogy to equation (48). For a finite sample of escape paths
one just has to take the average value of E0.5,a, because the
weighting factors pa are reflected in the relative probabilities
for the different observed escape paths.

Somewhat related approaches can be found in [208],
where different archetypical energy landscapes, characterized
by specific motifs (palm, willow tree, banyan tree), have been
studied. In that work the analysis has been generalized to take
into account non-Markovian effects.

4.3. Escape from an IS: simulations

In [53] the concepts, discussed above, have been explicitly
applied to the BMLJ system. In the first step repeated
simulations have been started from four randomly selected
low-energy ISs and it has been recorded when this region
in configuration space is left. An exponential waiting time
distribution has been observed [212], which is consistent with a
similar analysis shown in [213]. The temperature dependence
of the waiting time as well as the estimation of the apparent
activation energies are shown in figure 23. The escape is indeed
activated since the resulting activation energy is much higher
than the temperature.

The general scenario of local relaxation in a complex
PEL can indeed be retrieved from the numerical analysis. To
leave a low-lying IS the system typically jumps back several
times until finally the system escapes. This final part of
the trajectory is shown in figures 24 and 25 for BMLJ and
BKS-SiO2, respectively. In agreement with the theoretical
expectation during the final escape process the system does
not perform any correlated forward–backward motion. Via
additional repeated simulations from the different ISs the
respective values of pback have been determined. Via the

Figure 24. Potential energy along a typical escape path from a
low-lying IS of the BMLJ system. pback denotes the probability of
returning to the bottom of the MB. Reproduced with permission
from [53]. Copyright 2003 by the American Physical Society.
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Figure 25. The same as in figure 24, determined for BKS-SiO2.

pback-criterion the effective barrier for this escape can then
be obtained. A histogram of all effective barriers, obtained
from repeated runs, is shown in figure 26 for all four low-
energy ISs. Indeed, the estimation of the effective barrier
agrees very well with the observed respective activation energy
in figure 23. This strongly suggests that the local dynamics
can be quantitatively related to the local topology of the PEL.
A similar analysis has been performed for BKS-silica with a
similar agreement. Also below the glass transition temperature
both the reversible forward–backward jumps, returning to the
same configuration, and the irreversible jumps, leading to an
escape process, can be observed [214]. In agreement with
expectation the irreversible jumps show larger displacements
and larger energy variations.

Some interesting additional observations can be made:
(1) the barrier V0,1 of the first transition is significantly
smaller than the effective barrier. This shows that it is a
multi-step relaxation sequence which is required to leave the
attraction region of a low-energy IS. (2) For the example
in figure 24 it is clear that the main contribution to the
effective barrier stems from the energy difference between the
initial and the final IS and not from the additional barrier
between the last and the second but last IS. This holds in
general. For BKS-SiO2 the additional barrier contribution
between two ISs is approximately 20% of the total effective
barrier. Thus, the apparent barrier reflects the local topology
in terms of ISs rather than saddles [215]. (3) In the case
of BKS-SiO2 (using again N = 99 particles) it has been
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Figure 26. Histograms of barriers overcome when escaping the four low-energy ISs in figure 23. Apparent activation energies and mean
barriers are given in the figure. Reproduced with permission from [53]. Copyright 2003 by the American Physical Society.

explicitly checked that the sequence of IS transitions can be
interpreted as an sequential process rather than a sequence
of independent transitions [215]. (4) In the case of silica
most IS transitions are connected to bond breaking and/or
formation processes. Thus an elementary relaxation process
has to be visualized as a complex sequence of bond breaking
and formation events. After completion of one relaxation
process the system has, on average, changed five bonds.
(5) For the elementary barriers between ISs a strong correlation
with the total displacement has been observed: high barriers
correspond to large-displacement dynamics [216] in agreement
with results, reported in 4.1.2. The large displacement is
mainly related to the high degree of cooperativity, involved in
high-barrier dynamics.

The presence of multi-minimum paths for escape implies
that the effective barrier Eapp is a non-local property of the
PEL, since it involves the complex topology of the IS. Thus,
it remains to be shown whether the elastic models, postulating
a direct relation between the local force constants and the
barriers, can also be rationalized for a more complex PEL.

5. Impact of energy on the local mobility

After having discussed the escape properties from a central IS
in section 4, the relation of quantities such as Eapp to the energy
of the central IS are studied. As reflected by the data in figure 7,
one expects a strong correlation between energy and mobility.
For a quantitative analysis the concept of metabasins will turn
out to be essential.

5.1. Activated transitions on the PEL: models

There is a long history of models which describe the dynamics
in configuration space on a phenomenological level [217–222].
Qualitatively, one considers a region of the viscous fluid which
can cooperatively rearrange via a transition state. For the time
being the initial and final states may be characterized by the
energy of the respective IS. For sufficiently low temperatures
(T < TMCT) the elementary rearrangement process is
considered to be activated: the system leaves a state with
energy e, crosses a high-energy transition state with rate (e)
and ends up in a new state which is uncorrelated to the initial
one. Different names can be found for essentially identical
models (e.g. trap model, free energy model) following this
scenario. A thoughtful discussion of the physical background

e1

e3 e4

e2

Figure 27. Sketch of four subsystems.

can be found, e.g., in [223]. Later on this scenario will be
extended to larger regions, which to a first approximation
may be regarded as a superposition of independent elementary
systems. To be able to predict the macroscopic behavior
it is further assumed that the total macroscopic system can
be regarded as a superposition of independent systems; see
figure 27. As outlined in section 9 the exact meaning of the
term independent turns out to be a somewhat subtle issue.
Finally, a density of states G(e) has to be specified to complete
the model definition.

First, the hopping rate (e) is discussed. In section 4 it has
been argued that the escape from a state of energy e is a multi-
step process; see figure 28. Two energies can be defined. ecross

denotes the energy of the IS just after the final barrier, which
has a height V0. According to the model assumptions ecross

and V0 are independent of the initial energy e. Actually, even
in more complex systems like the random energy model one
can argue via percolation arguments that ecross is independent
of e [223]. For reasons of simplicity one may choose a fixed
value of ecross. This yields

(e) = 0(e) exp(−β Eapp(e)) (51)

with
Eapp(e) = ecross + V0 − e (52)

for e � ecross and Eapp(e) = V0 for e � ecross. Stated
differently, the escape for energies lower than ecross is solid-
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ecross

V0

e *

Figure 28. Sketch of the multi-step escape process, including the
definition of V0. The barrier with the star is supposed to be the critical
barrier beyond which pback < 0.5. Reproduced with permission
from [226]. Copyright 2008 by the American Physical Society.

like (activated) whereas otherwise it is liquid-like [224]. The
factor 0(e) displays possible entropic effects (see below).

Now we briefly review the properties of ecross, V0 and
0(e) as discussed in the literature.

(1) The choice of ecross relative to the distribution G(e) is
hardly discussed in literature. In the case of a Gaussian
G(e) with a maximum at energy e0 the standard choice
is ecross = e0 [219, 220, 222], although also ecross �=
e0 has also been studied numerically [223]. Since for
ecross = e0 the model predicts non-Arrhenius behavior
(see section 6), this is taken as a generic choice for fragile
systems [219]. It has been speculated that for strong
systems one has to take into account the additional effect
of the barrier height V0 [219]. For sufficiently large barrier
height this additional factor exp(−βV0) dominates the
temperature dependence of the dynamical process, giving
rise to strong behavior. The actual simulations for BKS-
SiO2 and BMLJ are not compatible with this interpretation
of strong systems (see section 5.3).

(2) In general, the prefactor 0(e) contains an energy-
dependent factor Mentro which denotes the number of
escape paths to reach a high-energy state with energy
ecross. Most of the authors have neglected this effect by
choosing 0(e) = 0. This would be justified in the case
of 1D reaction paths or low-dimensional percolation paths.
A simple expression for Mentro can be formulated if every
state with energy ecross can be reached from exactly one
state with energy e(< ecross). It is given by Mentro =
G(ecross)/G(e). More generally, if every state with energy
ecross can be reached from f (e, ecross) states with energy e
one obtains Mentro = f (e, ecross)G(ecross)/G(e).

A simple model PEL has been suggested by Brawer,
for which f (e, ecross) can be estimated [217, 225]. It
is close to the hypercube model discussed in section 3.
He starts from a defect picture of the supercooled liquid.
Every atom can either possess a low (no defect) or a

high coordination number (defect). Increasing the energy
just means that the number of defects is increased, each
giving a contribution of 	e. A state is thus fully
characterized by the number n of defects. In the simplest
version of this model one has f (e = n	e, ecross =
Ncross	e) = Ncross!/[n!(Ncross − n)!]. This binomial
coefficient expresses in how many ways Ncross − n atoms
can be selected out of Ncross atoms to reduce the energy
from Ncross	e to n	e in a monotonic way. Correlation
effects may reduce the number of possible transitions
f (e, ecross) [217, 225]. Unfortunately, this model is not
consistent with the requirement that the system has to
climb up to a state with energy ecross. If f (e, ẽ) > 1
for e < ẽ < ecross, it is possible for the system to
switch between different states of energy e without having
to climb up to an energy ecross but at most up to the
energy ẽ. As a consequence, f (e, ecross) must be identical
to f (ecross − 	e, ecross) and is thus independent of e.
Therefore one can write

0(e) = 0G(ecross)/G(e). (53)

For ecross − e 
 e0 − ecross this can be approximated as

0(e) ≈ 0 exp((e0 − ecross)(ecross − e)/σ 2). (54)

For later purposes this is rewritten as

0(e) = 0 exp(κkentro(ecross − e)) (55)

with
kentro = (e0,eff − ecross)/σ

2 (56)

and

κ = e0 − ecross

e0,eff − ecross
. (57)

This somewhat complicated way to rewrite equa-
tion (54) is motivated in two ways. First, because peq(e)
is directly related to Geff(e) and thus to e0,eff, see equa-
tion (27), it is more convenient to use e0,eff rather than e0

for the definition of kentro. Second, in practice the factor κ

has to be treated as an empirical parameter because the in-
crease of the entropic term 0(e) with decreasing energy
can somewhat deviate from the ideal scenario, described
above.

A natural choice for e > ecross is (e) = 0.
However, if not mentioned otherwise, we always consider
the relevant case e < ecross.

In figure 29 a sketch of the relevant energies used in the
present context, is shown.

It is convenient to introduce the shifted inverse
temperatures

β̃ = β − κkentro. (58)

In principle all calculations shown in this work can be
performed for κ �= 1. However, since the influence of the
entropic prefactor is not as important as the energetic term,
the additional complexity of the expressions is not worth the
additional information for κ �= 1. In what follows we therefore
always choose κ = 1 if not mentioned otherwise.
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Figure 29. Sketch of the energies introduced in the text. A possible
difference between G(e) and Geff(e) is neglected. Reproduced with
permission from [226]. Copyright 2008 by the American Physical
Society.

Now one can rewrite equation (51) as

(e) = 0 exp(−β̃(ecross − e)) exp(−βV0). (59)

Furthermore, for a Gaussian density of states one can express
peq(e) as

peq(e) ∝ Geff(e) exp(−βe) ∝ exp[−(e − ecross +σ 2β̃)2/2σ 2].
(60)

When comparing equation (59) with simulations one has
to take into account that the simulated system may contain
more than one elementary system; see figure 27. Each
subsystem is characterized by an energy ei and e = ∑

ei .
For a superposition of M independent subsystems the total
hopping rate M(e) is just the sum of the individual hopping
rates (ei ). To a first approximation one may assume that
the energy e is equally distributed among the M subsystems,
yielding M(e) = M(e/M). The quantitative analysis in
section 8 shows that the exact expression for M(e) contains
another energy-independent factor. The estimation for M (e)
suggests generalizing equation (59) to

(e) = 0 exp(−λβ̃(ecross − e)) exp(−βV0). (61)

Here 1/λ is a measure for the number of elementary
subsystems present in the specific system.

In what follows we call a system an ideal Gaussian
glass-former if Geff(e) is Gaussian and (e) is given by
equation (61). In section 6 several analytical results will be
presented for the ideal Gaussian glass-former to estimate, e.g.,
the temperature dependence of the diffusion constant [226].
For later purposes we introduce the dimensionless quantity

μ ≡ β̃σ. (62)

It will turn out that μ is the central property which determines
the properties of the ideal Gaussian glass-former.

Another simple picture of the PEL has been discussed
in [227] which starts from the low-temperature picture of an
ensemble of independent DWP. With increasing temperature
the asymmetries of the DWP start to fluctuate due to their
mutual interaction, mediated via the viscoelastic medium.
Among others this influences the shear response.

5.2. Metabasins

5.2.1. Motivation. One major goal of the PEL approach is
to relate the dynamics to properties of the PEL. In particular,
one would like to analyze whether the escape process from
a configuration is correlated with its energy. In section 4.2
we have analyzed the escape from an IS which is surrounded
by IS with higher energies. There we have seen that at low
temperatures the apparent activation energy Eapp to leave the
central IS (m = 0) is related to the energy difference of the
initial energy and the barrier before reaching the IS (m = mc)

with pback < 0.5. Basically the same activation energy has to
be used to describe the escape from an excited IS (m < mc),
because most likely the system will first go to the central IS.
In general, for the model in section 4.2 the rate to escape from
an IS with energy e at level m is approximately given by the
escape rate of the central IS (ecentral) with ecentral = e − m	e.
Thus, the energy e alone is not sufficient to predict the escape
rate from an arbitrary IS. How to arrive at a function (e)?
A straightforward way is to identify all ISs with m < mc

as one effective state with an energy e, given by the energy
of the central IS. This kind of coarse-graining is therefore
mandatory if one wants to formulate a relation between energy
and mobility.

The concept of grouping together adjacent ISs goes
back to Stillinger [61]. Starting from the experimental
observation of the Johari–Goldstein β process, typically
observed in fragile systems, one may relate the β process
to local transitions between a finite number of ISs whereas
the α process corresponds to a concerted sequence of these
transitions, transferring the system between two metabasins
(MBs). However, in this scenario it is still not clear
how the large activation energy of the Johari–Goldstein β-
process (≈24Tg) [228] can be understood. Furthermore, these
correlated forward–backward motions are often related to the
presence of low-barrier transitions, at the extreme of the
tunneling systems [159, 197, 202, 229].

5.2.2. Definition. For the simple model system in figure 21
the definition of an MB is straightforward. But how to
construct MBs if the only available information is the trajectory
of ISs as obtained from Stillinger–Weber-type simulations
(figure 7)? If one had performed a corresponding simulation
for the model potential in figure 21 one would have likely
seen a long sequence of forward–backward jumps between ISs
with m < mc. This may be taken as the motivation to define
a general coarse-graining procedure [229, 230]. Whenever
the system is performing forward–backward jumps between a
finite number of ISs, these ISs are grouped together as one MB.
It is characterized by two observables. First, one naturally has
the waiting time τ between the entry and the exit time of the
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Figure 30. Visualization of the definition of MBs as sets of ISs. The
key criterion is the presence of forth- and backjumps within an MB.

timeone metabasin

energy

A B C B D C E

Figure 31. Identification of a metabasin by identifying the largest
overlapping region, formed by the visited inherent structures.

MB. Second, the energy is chosen as the lowest energy of the
ISs visited during this time. This idea is sketched in figure 30.
For a typical time series of ISs one expects that MBs with low
energies will contain a larger number of ISs. In contrast, high-
energy ISs are often only visited once so this IS alone will be
considered an MB.

A strict definition of MBs based on the inherent dynamics
trajectory ξ(t) is possible with the following algorithm [231].
(a) Determine the regions [t∗

i , t†
i ] where t∗

i is the time of the
first and t†

i the time of the last occurrence of minimum ξ(ti ).
(b) Any two regions overlapping by less than τmol are cut so
that [t∗

i , t†
i ] ∩ [t∗

j , t†
j ] = ∅, where τmol is a small molecular

timescale. (c) Any two regions overlapping by more than τmol

are combined to [t∗
i , t†

i ] ∪ [t∗
j , t†

j ]. Step (b) is motivated by the
observation that very fast recrossings of a basin border during
a transition are very probable. Finally, the whole trajectory can
be regarded as a succession of different MBs. A more pictorial
view of the definition of a metabasin is shown in figure 31.

Strictly speaking, due to the stochastic elements of
the actual trajectory the formation of MBs is not unique
but depends on the specific trajectory. However, in a
statistical sense it is well defined and, as shown below, yields
unprecedented information about the relation between the PEL
and the dynamics.

In principle one would have to minimize the potential
energy after every MD step in order to obtain a maximum
accuracy of the MB transitions. In practice this can simplified.
First, one minimizes after regular time intervals. If two
subsequent ISs are identical there cannot be an MB transition
in this time interval. In the other case one uses interval
bisectioning techniques to identify the elementary transitions.

5.2.3. Applicability. The introduction of MB was motivated
by the goal to relate energy and mobility. There is, however,
a second major advantage. Naturally, the mean square
displacement for long times does not change if one takes the
real trajectory, the IS trajectory or the MB trajectory. Thus

one may also extract the diffusion constant from ξMB(t). Of
particular importance will be the average waiting times in an
IS or an MB. On the MB level the diffusion constant turns
out to be directly related to the average MB waiting time.
In contrast, on the IS level the long-range transport is also
strongly influenced by the temperature-dependent fraction of
forward–backward jumps. Then knowledge of the average
IS waiting time does not allow one to predict the long-range
transport.

Conceptually, a different definition of MBs would also
have been conceivable. As already discussed in [231] and
reflected in figure 7, the system is immobile for some time
then shows a time of high mobility until it becomes immobile
again. One might identify the immobile periods as residences
in MBs and the time in between as transitions between MBs.
Probably, this is the picture which Stillinger had in mind.
This was exactly the definition of so-called valleys, introduced
in [231] and revisited in [52]. From a practical point in this
way the waiting for a MB could be to a good approximation
obtained from the analysis of the real space dynamics without
the need of minimization [52]; see also section 7. However,
this alternative definition of MBs has some drawbacks: First,
due to the broad distribution of waiting times (see below) the
distinction between immobile and mobile (and thus between
MBs and transition between MBs) depends on an arbitrarily
chosen timescale. Actually, as shown below, there exists at
least one relatively well defined timescale τ �, which might
be appropriate for this purpose. Second, due to the unknown
effect of the transition periods on the long-range transport
it is impossible to relate the typical MB waiting time to
quantities like the diffusion constant. A related definition
of MBs has been presented in [87, 232]. Starting from
rates between ISs subsets are identified in which equilibration
can be achieved within a pre-fixed time. As compared to
the previous definitions this allows one in some limit (no
unbalanced transition rates [232]) to perform a unique partition
of the configuration space in MBs, independent of a specific
trajectory. However, in practice many details of the PEL have
to be discarded for the application of this approach.

On a qualitative level the presence of MBs, reflecting the
substructure of the PEL, has also been invoked to rationalize
that more highly annealed glasses remain in their initial region
of configuration space up to larger strains [233]. Interestingly,
the MB dynamics can be studied experimentally by analysis
of the lifetime fluctuations in single molecule spectroscopy
experiments [234]. Actually, with similar coarse-graining
procedures transitions in crystalline compounds have been
analyzed [235].

5.2.4. Energy distribution of MB. For BMLJ and BKS-SiO2

it has been shown that the Boltzmann distribution of ISs and
MBs is basically identical in the harmonic regime; see figure 32
where data for BMLJ are shown. Only at higher temperatures
do differences emerge. The similar distribution of ISs and MBs
can be easily rationalized. Since the energy of an MB is defined
as that of its lowest energy minimum, the mapping from IS
to MB transfers the weights of the elevated IS of an MB to
its lowest one. Thus, the distribution of MBs will be shifted
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Figure 33. Arrhenius plot of the average MB waiting time 〈τ(e, T )〉
and the resulting effective activation energy VMB(e) and the prefactor
τ0(e) for BKS-SiO2. Note that ec corresponds to ecut in the present
terminology. Reprinted with permission from [215]. Copyright 2006
by the American Physical Society.

to lower energies. However, at low temperatures typically the
lowest minimum of an MB is populated. Thus, the shift is very
small. In contrast, for high temperatures the system will spend
a significant time in the elevated minima of an MB such that
this shift becomes relevant.

5.3. Insight from simulations

As discussed above, low-energy MBs on average have longer
waiting times than high-energy MBs. This effect can be
easily quantified by averaging the waiting time for MBs of
similar energies, obtained from long simulations at different
temperatures. This analysis has been performed for BKS-SiO2

(figure 33) and BMLJ (figure 34). For BKS-SiO2 N = 99
particles have been used, for BMLJ N = 65 particles. A
discussion of this specific choice of the system size as well
as a discussion of other system sizes can be found in sections 8
and 9.

The escape from an MB can be characterized by an
Arrhenius behavior, quantified by an activation energy VMB(e)
and a prefactor 0(e), i.e.

(e, T ) = 0(e) exp(−βVMB(e)). (63)

 
   

Figure 34. Arrhenius plot of (a) the average MB waiting time
〈τ(e, T )〉, (b) the resulting effective activation energy VMB(e)
(denoted Eapp(e) in the figure) and (c) the prefactor τ0(e) for BMLJ.
Reproduced with permission from [53]. Copyright 2003 by the
American Physical Society.

Some interesting conclusions can be drawn about VMB(e)
and 0(e) which hold both for BMLJ and BKS-SiO2.

(1) VMB(e). There exists a crossover energy scale ecross

such that in the high-energy limit e > ecross the energy
dependence of VMB(e) approaches a constant V0, whereas
in the opposite limit VMB(e) increases linearly with
decreasing energy, i.e.

VMB(e) = λ(ecross − e) + V0. (64)

Figure 32. MB versus IS energy distribution peq(e) for the BMLJ system.
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Table 1. The thermodynamic and dynamic PEL parameters, obtained from simulation of BKS-SiO2 and BMLJ. The energy values are given
relative to e0,eff.

Thermodynamic Dynamic

N σ −ecut βharm α −ecross λ κ V0 0

BKS-SiO2 99 3.5 eV 43.4 eV ≈0 1.14 37.5 eV 0.66 0.62 0.8 eV 1/(20 fs)
BMLJ 65 3.0 — −0.3 0.73 12.9 0.55 0.3 1.0 1/150

Table 2. Relevant temperatures as derived from the data in table 1.

Tcross Tcut TK Tcross/
√

λσ 2 Tcut/
√

λσ 2 TK/
√

λσ 2

BKS-SiO2 3800 K 3275 K 2700 K 0.115 0.099 0.08
BMLJ 0.70 — 0.34 0.31 — 0.15

For a few single low-energy ISs the apparent activation
energy has been quantitatively related to the local topology
of the PEL; see section 4. Generalizing this procedure
one can also relate the value of VMB(e) to the explicit
properties of the PEL. Here, one has to take into account
the average over all MBs of energy e. If MB i is visited
with probability ϕi (which in the harmonic approximation
is temperature independent) one has for the average
waiting time

〈τ (e)〉 =
∑

i

ϕi〈τi 〉 (65)

〈τi 〉 is the average waiting time of MB i . Then one can
write

−d ln〈τ (e)〉
dβ

= −
∑

i ϕi〈τi 〉
〈τ (e)〉

d ln〈τi 〉
dβ

= 1

〈τ (e)〉
∑

i

ϕi〈τi 〉
∑

a

pa,i E0.5,a,i (66)

where in the last step we have used equation (50).
Applying this to the finite trajectory, sampled during the
MD simulations, one can thus estimate

VMB(e) ≈
∑

j τ j E0.5, j∑
j τ j

. (67)

Again, the correct weighting factors are implicit here.
Note that in equation (67) the average over individual
MBs no longer enters. Equation (67) establishes a relation
between VMB(e), obtained from analyzing the average
waiting time, and E0.5, j , extracted from an explicit saddle
analysis; see section 4.

It turns out for BMLJ that the right side of
equation (67) is indeed an excellent estimate of VMB(e) for
e < ecross [53]. Thus, the function VMB(e) can be directly
related to the specific PEL properties.

Interestingly, the constant value VMB(e) = V0 in the
high-energy limit is close to the additional contribution of
the last saddle before pback < 0.5. Thus, there are two
distinct contributions to VMB(e): (i) VMB(e) − V0 reflects
the topology of the PEL, related to differences between
IS energies; (ii) V0 is the additional contribution due to
saddles. In the low-energy limit, accessible by computer
simulations, the first contribution is dominant.

Recently, de Souza and Wales analyzed the tempera-
ture dependence of the mean square displacement, evalu-
ated for a fixed time τ [236]. Of course, for very large
τ this analysis recovers the standard diffusion coefficient.
For ambient τ , which for the lowest temperatures is sig-
nificantly shorter than τα, the authors observe a simple
Arrhenius behavior with the high-temperature activation
energy V0. For lower temperatures this approach is sensi-
tive to the local forward–backward motion within an MB.
The barriers in this regime are of the order of V0 so that the
local processes remain activated with the high-temperature
activation energy. This strengthens the observation that it
is roughly the same value V0 which governs the additional
barrier height at low and high energies.

Interestingly, the function VMB(e) somewhat resem-
bles the energy-dependent barrier height in figure 10 with
a value of λ ≈ 0.5. Note, however, that in one case the
MB description and in the other the IS description is used.

(2) 0(e). 0(e) is constant for e > ecross. Its value
0 ≈ 1/20 fs−1 for BKS-SiO2 is of the order of typical
molecular timescales. For e < ecross one observes to a
good approximation ln(0(e)/micro) ∝ (ecross − e). For
BKS-SiO2 the increase of 0(e) is nearly four orders of
magnitude. In contrast, for BMLJ a variation by only one
order of magnitude is observed. In both cases the behavior
can be described by using equation (55).

In summary, the data for both systems can be to a good
approximation described by equation (61) (for e < ecross and
β̃ > 0) and (e) = 0 exp(−βV0) otherwise. In particular, for
e < ecross 0(e) indeed displays an exponential dependence on
energy. The arguments, put forward to derive equation (61)
from model considerations, strongly suggest the relevance of
percolation-like effects. This means that only for e � ecross

there is a significant probability to find adjacent MB with
similar energy.

For BMLJ and BKS-SiO2 the PEL parameters are listed
in table 1. Note that if not mentioned otherwise from now on
all energies are expressed relative to e0,eff, i.e. the maximum of
Geff(e). For the analytical calculations, to be presented below,
it is convenient to exclusively use equation (61), i.e. using
e < ecross and β̃ > 0. The first relation starts to be very well
fulfilled if ecross −〈e(T )〉 > σ , which roughly implies T < 0.6
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in the case of BMLJ and T < 3600 K in the case of BKS-SiO2.
In this temperature range one also has β̃ > 0.

How do these results compare with the model suggestions
for (e)? First, it turns out that ecross is significantly smaller
than e0,eff. As will become clear below, this difference is
crucial for properties like the fragility. Second, the additional
barrier height V0 is present both for BKS-SiO2 and BMLJ (and
has similar height after normalization by σ ). Therefore, V0

cannot be of any relevance for the question of fragility. It can
be directly extracted from the high-temperature behavior.

The observation λ < 1 suggests than even these small
systems are not elementary. This is equivalent to the result
reported in [229] that a consistent mapping on an elementary
trap model is not possible.

In table 2 the related temperature scales are listed for
both systems. Tcross and Tcut are determined from the
condition that 〈e(T )〉, evaluated via equation (35), correspond
to the respective energies ecross and ecut, respectively. TK is
determined via equation (37). Furthermore, the normalized
temperatures are also listed in table 2. The additional factor λ is
rationalized by the fact that σ 2 as well as 1/λ are proportional
to the system size (see also section 8). Thus, the normalized
temperatures are system properties and do not depend on the
chosen system size.

Two major differences are evident when comparing BKS-
SiO2 and BMLJ. First, the low-energy cutoff for BKS-SiO2

is significantly larger than the cutoff dictated by entropy.
Thus, the amorphous ground state is a finite-entropy state.
Second, Tcross/

√
λσ 2 (or, equivalently, (−ecross)/

√
λσ 2) is

much lower for BKS-SiO2. This means that activated processes
become relevant only for states much lower in the PEL. As
a consequence, a characteristic temperature like TMCT should
be lower for silica than for BMLJ because of its significantly
smaller value of (−ecross)/σ . Indeed, 	(σ/TMCT) ≡
(σ/TMCT)silica − (σ/TMCT)BMLJ ≈ 12.2 − 6.7 = 5.5 [53, 68]
and 	((−ecross)/σ ) = 6.4 are similar. Furthermore, the energy
dependence of 0(e) for BKS-SiO2 is much more prominent.

For small systems the mobility of the total system is
strongly correlated with energy. Do these correlations also
hold on the single-particle level? In previous work little
correlation has been observed between single-particle mobility
and single-particle energy [30, 55]. Of specific interest
in this context is the very recent work of Poole and co-
workers on water. They determined the mobility of the single
particles and correlated it with its potential energy [237].
Interestingly, when choosing the potential energy of the
initial configuration (denoted u0

i in their work) for which
the isoconfigurational runs are performed, only very little
correlation is observed, in agreement with what was reported
above; see figure 35(a). If, however, the energy is defined as
the average single-particle energy after the isoconfigurational
runs (denoted 〈ui 〉ic) the immobile particles clearly possess the
lowest potential energies, whereas there is still no distinction
between mobile and very mobile particles in terms of energy;
see figure 35(b). The authors relate this effect to the fact
that in the isoconfigurational ensemble there is an explicit
average over the neighbor configurations which reduces the
noise. In general, the difficulty to relate energy and mobility
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Figure 35. The (a) instantaneous potential energy and (b) potential
energy in the isoconfigurational ensemble versus the displacement of
the different particles in the isoconfigurational ensemble for water.
Reprinted with permission from [237]. Copyright 2006 by the
American Physical Society.

on a single-particle scale probably reflects the omnipresence
of cooperative effects for the dynamics of supercooled liquids.

Recently, Wang and Stratt have analyzed the topology
of the PEL by restricting the dynamics to configurations
with a maximum energy EL [238, 239]. Interestingly, it
turned out that upon decreasing the value of EL there exists
a critical energy from which point on the system is no
longer able to explore the whole configuration space but is
rather constrained to some region. This observation has
been related to the geometric features of the PEL by stating
that there is a timescale-independent percolation transition.
This is exactly the interpretation following from the results
shown in figures 33 and 34. Interestingly, the temperature
thermodynamically related to their critical value of EL is very
close to TMCT.

6. The average dynamic behavior as determined by
the thermodynamics

Via the rates (e) = 1/〈τ (e)〉, gained from general
considerations and simulations, we have made a first
step towards the connection between thermodynamics and
dynamics. In this section we will go one step further by
estimating the different moments 〈τ n〉 of the waiting time
distribution. Naturally, the Boltzmann weights enter to bring in
the dependence on temperature. We start by showing that the
diffusion constant D is proportional to 1/〈τ 〉 and the structural
relaxation time τα to 〈τ 2〉/〈τ 〉. Therefore, the moments 〈τ n〉
are indeed of central relevance.
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V(e)

3´´ 1 2 3 1´ e

Figure 36. A simple periodic PEL to rationalize the difference
between ϕ(e) and Geff(e).

6.1. MB probability densities and the waiting time distribution

The average waiting time 〈τ 〉 can be estimated as (
∑

k τk)/K
where the summation is over the different MBs visited by the
system. In section 5 we have seen that there is a distinct
relation between energy and mobility. Thus, one may try to
express 〈τ 〉 and, more generally, 〈τ n〉 in terms of the energy
distribution.

For this purpose we first introduce ϕ(e) as the probability
density that in a series of different MBs visited by the system a
randomly chosen MB has energy e. Then the average waiting
time is given by averaging 〈τ (e)〉 over all MBs, i.e.

〈τ 〉 =
∫

de ϕ(e)〈τ (e)〉 =
∫

de ϕ(e)/(e). (68)

ϕ(e) is distinctly different from the Boltzmann distribution
peq(e) which denotes that at a randomly given time the present
MB has energy e, i.e. peq(e) ∝ ϕ(e)〈τ (e)〉. Including a
normalization factor this can be rewritten as

peq(e) = ϕ(e)

(e)〈τ 〉 . (69)

Qualitatively, this relation expresses that low-energy states
(small (e)) are often observed (at randomly chosen times),
although their actual number ∝ ϕ(e) may be very small.

From equations (26) and (69) it follows that ϕ(e) ∝
Geff(e) if (e) ∝ exp(βe). However, in general, this is not
the case (e.g. for λ < 1). Due to the utmost importance of the
ϕ-distribution in the theoretical description (see, in particular,
section 7) this is rationalized for a simple example. In figure 36
a PEL with three states is shown. Thus, Geff(e) has three
equal contributions at three energies. However, the sequence
of minima as obtained from a standard kinetic simulation will
mostly display jumps between minima 1 and 2. Thus for state
3 ϕ(e) is somewhat smaller. This difference would disappear
(and, thus, ϕ(e) ∝ Geff(e)) if the barrier between states 2
and 3 had the same height as the barrier between states 1 and
2. In general, ϕ(e) is expected to have a weaker temperature
dependence than Geff(e).

Multiplication of equation (69) by (e) and subsequent
integration yields

〈τ 〉−1 =
∫

de peq(e)(e) ≡ 〈〉p . (70)

Thus, the average waiting time is also related to the rate
average over the equilibrium probability distribution. Note the
different notations (〈·〉 as the ϕ-average versus 〈·〉p as the p-
average).

So far no information about the nature of the relaxation
process has entered the analysis. In the simplest case the
escape from a state with energy e is governed by a single
barrier height. Then the waiting time distribution, related to
this energy, is just (e) exp(−(e)t). For the BMLJ(N =
65) system one has 1/λ ≈ 2 subsystems. In the simplest
picture the total energy is then the sum of two independent
subsystems, each with energy ei (e1 + e2 = e), and for
a given energy decomposition the total rate (e) is given
by (e1) + (e2). Actually, as outlined in section 8.2, the
normalized second moment 〈τ (e)2〉/〈τ (e)〉2 is expected to be
around 16 for T = 0.5 for two subsystems as compared to 2
for an elementary system. The broadening of the waiting time
distribution at fixed energy is due to the fact that for a given
total energy e several decompositions e = e1 + e2 are possible,
each giving rise to different escape rates. The numerically
observed value is approximately 8 [212]. This means that the
BMLJ(N = 65) system behaves, to first approximation, like
two independent subsystems (each described by λ = 1 and
variance σ 2/2 if σ 2 is the variance of the original system). A
possible reason for the decrease from 16 to 8 will be given
below. In what follows we neglect this effect and postulate that
the elementary system behaves like an ideal Gaussian glass-
former with λ = 1 and an exponential waiting time distribution
at given energy. Note that the waiting time distribution at
fixed energy is a well defined observable in the MB approach
and can be easily obtained numerically. This is different
to previous approaches, where on a phenomenological level
quantities like a local viscosity have been introduced for which
a strict definition does not exist [132, 240]. In any event, the
subsequent calculations can be easily generalized to take into
account possible deviations from a purely exponential behavior
of the waiting time distribution of the elementary system.

As a result, the total waiting time distribution ϕ(τ) of the
MB residences can be written as a superposition of exponential
functions, i.e.

ϕ(τ) ∝
∫

de
∫

dt ϕ(e) exp(−(e)t)δ(t − τ ) (71)

where the energy-weighting is via ϕ(e).
This aspect of exponential versus non-exponential local

relaxation is strongly related with the old discussion of
homogeneous versus heterogeneous relaxation [16, 17].
Heterogeneous relaxation would simply mean that one
has a superposition of exponentially relaxing entities.
Experimentally it has been shown that the dynamics at the glass
transition is basically heterogeneous [18]. This also indicates
that the choice of an exponential waiting time distribution is
indeed not too bad.
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6.2. Temperature-dependent moments of the waiting time
distribution

For an ideal Gaussian glass-former we know its energy
distribution as well as the relation between energy and
dynamics. Based on this one can now characterize the temporal
properties of the hopping events. (e) is dictated by the two
energies ecross and ecut. We always assume that β̃ is sufficiently
low that e > ecross is not relevant. With respect to ecut

two temperature regimes can be distinguished. Whereas for
σ 2β̃ < |ecut| the low-energy cutoff does not play any role, for
even lower temperatures σ 2β̃ > |ecut| it starts to dominate the
thermodynamics and thus also the dynamics. These two cases
are now discussed.

Note that within the present formalism the dynamics
can even be predicted for temperature regimes below those
accessible nowadays by computer simulations [224]. Here
one may exploit that the temperature dependence of peq(e)
and (e) is known from knowledge of the parameters listed
in table 1.

6.2.1. No influence of cutoff energy. Using the explicit form
of Geff(e) one obtains after a straightforward integration of
equation (70)

〈τ 〉−1 = 0 exp((λ2/2 − λ)μ2/2) exp(−βV0). (72)

This relation holds without any assumption about the nature
of the waiting time distribution. To calculate the moments of
ϕ(τ) beyond the first moment one needs to specify the waiting
time distribution as discussed above. Here we present results
for an exponential waiting time distribution for the elementary
subsystem, i.e. equation (71). Therefore we always choose
λ = 1.

Its different moments 〈τ n〉 can be directly calculated
by multiplication of equation (71) with τ n and subsequent
integration, i.e.

〈τ n〉 = n!
∫

de ϕ(e)(e)−n = n!〈τ 〉〈1−n〉p exp(nβV0).

(73)
For the second equality equation (69) has been employed.
Straightforward evaluation of Gaussian integrals yields

〈(/0)
m〉p = exp[(m2/2 − m)μ2 − mβV0]. (74)

The case m = 1 recovers equation (72). Furthermore, the
case m = −1 yields

〈τ 2〉 = exp(μ2)〈τ 〉2. (75)

In most models no distinction between ecross and e0,eff is
made; i.e., ecross = 0 in the present notation. Then μ can
be identified with β . The relations for this special case can
already be found in the literature [220]. Note that in this limit
equation (72) corresponds to the well known 1/T 2 temperature
dependence, discussed, e.g., in [223].

From the theoretical perspective the case of an exponential
distribution of energies peq(e) ∝ exp(−e/e0) is of special
interest [220]. Then for the temperature T = e0 the
first moment of the waiting time distribution diverges.
Qualitatively, this can be interpreted as a glass transition in
terms of a real phase transition. Below this temperature the
system displays specific aging properties.

6.2.2. Influence of cutoff energy. In general, every system
will have a lowest energy (see equation (38) for a Gaussian
distribution), which might suggest a transition to an Arrhenius
temperature dependence at low temperatures. In what follows
we use the notation ecut for the lowest energy—independent of
whether this energy is characterized by a finite or vanishing
entropy. We restrict ourselves to the discussion of 〈τ 〉 and thus
consider the case of general λ.

Qualitatively, one expects that at sufficiently low T
the Boltzmann distribution reads peq(e) ≈ δ(e − ecut).
Then equation (70) predicts that 〈τ (T )〉 is activated with an
activation energy of VMB(ecut). Indeed, for BKS-SiO2 the
macroscopic activation energy of diffusion and VMB(ecut) agree
within statistical uncertainty [215].

For a quantitative analysis we assume for reasons of
simplicity that Geff(e) is Gaussian for e > ecut and Geff(e) = 0
for e < ecut. For λ = 1 the transition to an Arrhenius behavior
happens around β̃σ 2 ≈ −ecut. The average waiting time is
calculated in appendix B. The result reads

0〈τ 〉 ≈ exp(βVMB(ecut)) exp((e2
cross − e2

cut)/2σ 2). (76)

Note that the microscopic prefactor (1/0) is supplemented by
the additional term exp((e2

cross − e2
cut)/2σ 2).

The situation is somewhat more subtle for λ < 1. In this
case the Arrhenius temperature dependence only sets in for an
even lower temperature regime β̃σ 2(1 − λ) > [ecross − ecut].
One obtains (see, again, appendix B)

0〈τ 〉 ≈ exp(βVMB(ecut)) exp((λe2
cross − λecrossecut)/σ

2).

(77)
Because of the additional temperature regime emerging for
λ < 1, there is no continuous transition between both
expressions. The latter expression is of relevance for the actual
simulations. Note that here the microscopic prefactor (1/0)
has another factor exp(λ(e2

cross −λecrossecut)/σ
2). For example,

for BKS-SiO2 this prefactor is of the order of 105, in very good
agreement with the actual simulation data [175].

In the next step one can calculate the timescale
from which point on Arrhenius behavior is observed by
evaluating equations (76) and (77) for the respective transition
temperature. One obtains 0〈τ 〉 = exp((ecross − ecut)

2/2σ 2)

for λ = 1 and

0〈τ 〉 = exp((λ/(1 − λ))(ecross − ecut)
2/σ 2) (78)

for λ < 1. From equation (78) it turns out for BKS-
SiO2 that for 0〈τ 〉 ≈ 102 one has the crossover to the
Arrhenius regime (neglecting the additional minor influence of
κ < 1) [68, 116, 118, 174, 241].

More generally, the low-temperature Arrhenius depen-
dence can be clearly related to the cutoff in the PEL, which
itself reflects the network structure of silica. On a qualitative
level the possible relation to the tetrahedral ordering has been
already described in [242]. Interestingly, the Arrhenius behav-
ior of BKS-SiO2 disappears upon application of pressure when
the tetrahedral network structure starts to be destroyed. Also
for metallic glasses a correlation has been reported that systems
with larger icosahedral ordering are more Arrhenius-like [243].
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Figure 37. The temperature dependence of 0〈τ 〉(∝ D(T )) for
different values of the crossover energy with λ = 1 (the values are
given with respect to e0,eff, following the present convention).
Reproduced with permission from [226]. Copyright 2008 by the
American Physical Society.

Estimating ecut for BMLJ65 via equation (38) one obtains
0〈τ 〉 ≈ 1010. This is beyond current computer facilities.
This shows, however, that for experimental systems it is well
conceivable that in the range of experimentally accessible
temperatures a transition to Arrhenius-type behavior might
occur (note that 1/0 ≈ 20 fs for BKS-SiO2; see table 1).

6.3. Fragility

6.3.1. Kinetic fragility. Here we discuss the temperature
dependence of 〈τ 〉 (and thus of D(T )) and in particular the
fragility for an ideal Gaussian glass-former (without or with a
cutoff) for the limiting case λ = 1.

The glass transition temperature is defined by the
condition

0〈τ (Tg,K )〉 = 10K . (79)

Tg,16 = 1/βg,16 corresponds to the calorimetric Tg because
η(Tg)/η(T � Tg) ≈ 1016. Here we assume that the
viscosity, which is the typical basis for the fragility, displays
the same temperature dependence as the diffusion constant.
Since the Stokes–Einstein relation is not strictly fulfilled, the
results for the diffusion constant in terms of the values of Tg

and the resulting fragility are not exactly the same. Simple
expressions emerge for the case V0 = 0 (corrections can be
simply calculated but only mildly influence the results). Using
equation (74) for the case without cutoff a straightforward
calculation yields [226]

σβg,K = kentroσ + √
2K ln(10). (80)

Moreover, the fragility

mkin,K ≡ −d log〈τ (T )〉/d(Tg,K /T )|T =Tg,K , (81)

here expressed via 〈τ (T )〉, turns out to be

mkin,K = 2K + √
2K/ ln(10)kentroσ. (82)

In this regime the fragility depends on the dimensionless
parameter kentroσ = −ecross/σ . Thus, with the dynamic
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Figure 38. The temperature dependence of 0〈τ 〉 for different values
of the cutoff energy for intermediate crossover energy.

crossover energy we have identified a central PEL parameter
determining the fragility. These results are visualized in
figure 37. One can clearly see how the fragility increases with
increasing −ecross/σ .

Note that equation (82) implies that BMLJ would be
stronger than BKS-SiO2 if the cutoff were artificially removed
so that the PEL were purely Gaussian. The non-fragile
behavior of BMLJ has already been mentioned in [244].

If the cutoff energy enters before the glass transition
temperature is reached the evaluation for the low-temperature
Arrhenius-regime yields

mkin,K = K + [e2
cut − e2

cross]/(2 ln 10σ 2). (83)

In figure 38 we explicitly show the dependence on the
cutoff energy. In agreement with our theoretical discussion one
observes that for increasing cutoff energy the system becomes
stronger.

Of course, since the temperature dependence of τα is in
general not identical to that of 〈τ 〉, the results would slightly
differ if mkin,K were calculated for τα or η rather than for the
diffusivity.

Empirical relations to correlate the fragility with, e.g., the
Poisson ratio have been suggested [245], but are questioned
in [246]. It would be interesting to check whether there exists a
physical connection between the observables suggested in that
work and the value of ecross, determining the crossover from
liquid-like behavior to solid-like behavior.

The present analysis has shown that at least two more or
less independent energy scales ecut and ecross have a strong
influence on the fragility. As a consequence, ordering the
glass-forming systems by fragility does not fully reflect their
underlying differences.

6.3.2. Relation to the AG approach. Alternatively, one can
calculate the value of βg under the assumption of the AG
relation equation (8) and a Gaussian PEL (using βharm = 0).
Then one has to solve the equation

10K = exp(βg BAG/(α − β2
gσ 2/2N)). (84)
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For large K one obtains

βg =
√

2αN

σ
− BAG

√
N

σ K ln(10)
. (85)

Then a straightforward calculation yields for the fragility
(again in the limit of large K )

mkin,K =
√

2αK 2(ln 10)2σ

BAG

√
N

; (86)

within the AG approach the fragility depends on the density of
states, i.e. α, as well as the empirical constant BAG. A large
number of states implies larger fragility (at least for fixed BAG

which, of course, could also depend on α [24]).
It may be interesting to compare this relation with the

fragility equation (82), obtained for an ideal Gaussian glass-
forming system. Qualitatively, both relations would show a
somewhat similar behavior if systems with large α are related
to systems with a low crossover energy ecross, i.e. large kentro.
This is not unreasonable because in the spirit of percolation-
like arguments for a larger number of ISs the system would
be able to find a path with a lower barrier to move between
two low-energy ISs. However, in a strict way it will not be
possible to map equation (86) onto (82) because of the different
K dependence. Formally, this problem could be solved if α

decreases with increasing K , i.e. going to longer timescales
and thus lower glass transition temperatures. Qualitatively this
statement is equivalent to the requirement that G(e) decays
faster than a Gaussian. As discussed in section 3.5 this would
be the case if the distribution were influenced by the presence
of a broadened cutoff energy.

6.3.3. Thermodynamic fragility. In the spirit of the
thermodynamic fragility as discussed in [20, 127] one can
define the thermodynamic fragility index via [24]

m thermo,K = −βg
S′

c(βg)

Sc(βg)
. (87)

Without cutoff we obtain, using equation (36),

m thermo,K = σ 2(βg − βharm)βg

Nα − σ 2(βg − βharm)2/2
. (88)

Note that the denominator must be positive, because otherwise
the entropy of the system would be negative. Under this
condition, an increase of σkentro (which is the only relevant
dimensionless parameter, characterizing ideal Gaussian glass-
formers) and thus of σβg (via equation (80)) gives rise to an
increase of m thermo,K and mkin,K , independent of the values
of βg or α. This strong correlation of mkin,K and m thermo,K

is in agreement with the experimental observation for most
systems [20].

Interestingly, increasing the value of βharm yields a
decrease in m thermo,K . However, a different behavior emerges
if one includes the vibronic contribution in the entropy, i.e. by
using Sex(T ) = Sc(T ) + Sharm(T ) rather than Sc(T ). Sc(T )

is given in equation (36). Sharm(T ) can be determined from
equations (23) and (35). Apart from a constant and a term

depending logarithmically on β , one finds Sex(T, βharm) =
Sc(T,−βharm). Accordingly, when defining m thermo,K on the
basis of Sex(T ) one obtains an increasing thermodynamic
fragility for increasing βharm in agreement with the qualitative
discussion in [20].

If the cutoff starts to influence the system a detailed
calculation is no longer possible because the behavior of the
configurational entropy at low temperatures depends on the
details of G(e) at low energies. Thus, it is not surprising
that for SiO2 the thermodynamic fragility does not follow the
general trend [20].

The present discussion complements the work in [84]
where the kinetic and the thermodynamic fragility have been
discussed with reference to the AG relation. Simulations have
also revealed a significant correlation between both fragilities.

6.4. Relaxation properties and violation of the
Stokes–Einstein relation

Here we ask for the probability S0(t) that a system in
equilibrium has not performed a hopping process until time t .
It is given by

S0(t) =
∫

de peq(e) exp(−(e)t). (89)

In what follows the trivial factor exp(βV0) will be omitted.
Furthermore, only the case λ = 1 is discussed. Naturally, one
has

S0(t) = lim
q→∞ S(q, t), (90)

if S(q, t) (defined in equation (1)) is evaluated for the MB
trajectory. Equation (90) follows from the observation that for
large q a single MB transition is sufficient for full decorrelation
of the incoherent scattering function. The q-dependence of
S(q, t) will be discussed in more detail in section 7.3.

For a given temperature we define � = (〈e(T )〉 as the
typical rate for this temperature. One obtains (neglecting the
possible effect of βharm �= 0)

� = exp(−μ2). (91)

Introducing the normalized variables u = ln(t�) and
v = ln((e)/�) equation (89) reads after substitution [247]
(note that u contains the time dependence)

S0(u) = 1/
√

2πμ2

∫
dv exp(−v2/2μ2) exp(− exp(u − v)).

(92)
The last factor represents the exp(−t) term. Thus, the
distribution of relaxation rates corresponds to a log-normal
distribution.

As discussed in the appendix C, an interesting relation
to stretched exponential relaxation functions can be drawn,
yielding S0(t) ≈ exp(−(t/τKWW)βKWW) with (see also [247])

βKWW = 1/
√

1 + μ2 (93)

and τKWW = 1/�, holding for times around τKWW. This may
justify the use of the stretched exponential as a fitting function
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Figure 39. The function S0(t) for
√

μ2 = 1, 2, 2.5, 3 (solid lines
from left to right). The approximation by stretched exponentials with
βKWW = 1/

√
1 + μ2 is indicated by broken lines. Furthermore, for√

μ2 = 2.5 the case of finite kex is included (circles) together with its
fit by a stretched exponential (see section 9).

at least for intermediate times. Note that the specific form of
(e) only enters via �.

In figure 39 we have numerically calculated S0(t) for
different values of μ2 and compared with the corresponding
stretched exponential functions. Deviations are present at short
and long times. Actually, from equation (92) one can directly
extract the long-time limit. Due to the double-exponential term
the contribution to the integral is restricted to v ≈ u. For large
u the first factor can thus be substituted by exp(−u2/2μ2) so
that

S0(t) ∝ exp(−u2/2μ2) ∝ t−u/2μ2
, (94)

i.e. a nearly algebraic behavior (note that u depends
logarithmically on t).

One can define the α-relaxation time τα via

τα =
∫

dt S0(t) (95)

which corresponds to the typical time until a particle jumps
for the first time. This definition may sound surprising
because typically τα is related to the decay of S(qmax, t), see
equation (2). However, as shown in section 7.2, in the limit
of low temperatures the q → ∞ limit is already reached for
relatively small values of q , if evaluated for the MB trajectory.

From equation (89) one immediately obtains (also using
equation (74))

τα = 〈−1〉p = (1/0) exp(3μ2/2). (96)

This has to be compared with the average hopping time 〈τ 〉
(equation (72)). One obtains

τα/〈τ 〉 = exp(μ2). (97)

Since the left side is proportional to Dτα , equation (97)
expresses the invalidation of the Stokes–Einstein relation for
ideal Gaussian glass-forming systems. Using the definition of
the exponent α in equation (4), i.e. 〈〉〈−1〉 ∝ 〈−1〉α , one
obtains α = 2/3. Experimental values are smaller (e.g. 0.25

for orthoterphenyl [21] and 0.23 for TNB [248]). Thus, the
decoupling seems to be too strong. Qualitatively, the strong
increase of τα with decreasing temperature is due to the very
long-time tail of S0(t), contributing to the present definition of
τα in equation (95).

These arguments can be generalized to a Gaussian
distribution of barriers, with average barrier height V̄ and
variance (δV )2. Then a straightforward calculation yields
[112] 〈〉p = exp(β2(δV )2/2) exp(−β V̄ ) and 〈−1〉p =
exp(β2(δV )2/2) exp(β V̄ ). Thus, one obtains

α = 2

1 + 2V̄ /(β(δV )2)
. (98)

Formally, the ideal Gaussian glass-former (with V0 = 0)
can be mapped on this general case by choosing V̄ = βσ 2

and δV = σ as the average barrier height and the standard
deviation, respectively. Of course, these barriers are only
effective barriers since they just represent the difference of
the average energy and the value of ecross (of course, β has to
be substituted by β̃ if ecross �= 0). Consistently, one obtains
α = 2/3 for this case. Wolynes et al (for the dynamics
of a probe molecule) [249] as well as Schweizer et al [112]
have estimated the static as well as the fluctuating part of the
barriers. The latter work reports values for α around 0.1–0.3
when choosing reasonable model parameters.

For the KCM it possible to estimate the waiting time
distribution at a given spin and thus to obtain information
about the average as well as the inverse average waiting
time (conveniently expressed via the persistence time; see
section 7.3) [148]. It turns out that for the Fredrickson–
Andersen model (Arrhenius behavior) the value of α depends
on the dimension (α(d = 1) = 1/3, α(d = 3) = 0.05)
whereas for the East model (non-Arrhenius behavior) α ≈ 0.27
for all dimensions.

Since the relations derived above are fully compatible with
the local dynamics (via (e)) and the thermodynamics, these
general results hold in particular for BMLJ and BKS-SiO2 for
the small system sizes discussed above. A generalization to
larger systems is sketched in section 9.

If the cutoff energy does not interfere and V0 can be
neglected, the temperature dependence of the dynamics is fully
captured by the value of μ. This means in particular that at
Tg an ideal Gaussian glass-former is characterized by a fixed
value of μ, independent of σkentro and thus independent of
its fragility. This implies via equation (93) that the stretching
parameter βKWW does not depend on the fragility if determined
exactly at Tg. Of course, residual fluctuations are expected
when systems with different values of λ, κ and V0 are taken
into account. This argument will not change when the effects
discussed in section 9 are additionally taken into account.

6.5. Exploration of MBs in different temperature regimes

We have seen that the escape rate from a MB strongly depends
on energy. Therefore, the typical hopping characteristics
will strongly depend on temperature and thus may reflect
the different temperature regimes for a supercooled liquid.
This temperature dependence can be explicitly analyzed for
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the temperature dependence of the waiting time distribution
ϕ(t). It is shown in figure 40 for different temperatures [224].
It turns out that there is one crossover timescale τ � where
the distribution changes its slope. To elucidate its physical
interpretation the angle α between the entry point, the lowest
minimum of the MB and the exit point of the trajectory have
been determined for every MB. The average value of 〈cos α(t)〉
versus the lifetime t of the respective MB is also shown in
figure 40. Visiting a MB with waiting time larger than τ �

implies that the entry and exit points of this MB are largely
uncorrelated. This happens after a long residence inside an
MB with many possible exits. In some sense, the system
has equilibrated within the MB. In contrast, for t < τ�

the dynamics of the system is not strongly attracted by the
underlying minima so that it can immediately escape. In
some sense, these transitions can be regarded as bookkeeping
events [250]. More generally, one can say that the system in
a MB with t > τ� is solid-like and in the other MBs the
system behaves as liquid-like. These terms just reflect the
intuition that for liquid-like behavior barriers are not relevant.
To a good approximation τ � is temperature independent; see
figure 40. This is not surprising because the timescale to
explore a minimum does not strongly depend on temperature.

At lower temperatures the system, first, stays longer in
MBs of a given energy and, second, explores lower energy
states with even longer waiting times. For both reasons the
contribution of solid-like MBs should strongly increase with
decreasing temperature. To capture this effect we introduce the
probability p(τ ) that at a randomly given time the waiting time
has a value τ . The distribution p(τ ) will be shifted to larger
times than ϕ(τ) because it is more likely to randomly choose
MB with a large waiting time than vice versa. The relation
between p(τ ) and ϕ(τ) is given by

p(τ ) = ϕ(τ)τ

〈τ 〉 (99)

which, conceptually is equivalent to equation (69).
This effect can be captured in two different ways. (i) The

fraction of solid-like configurations encountered by the system
during its walk through configuration space is given by

ϕsol ≡
∫ ∞

τ �

dτ ϕ(τ ). (100)

(ii) The fraction of time spent in solid-like configurations can
be expressed as

psol ≡
∫ ∞

τ �

dτ p(τ ). (101)

In figure 41 we show the temperature dependence of both
quantities for BMLJ. Three different temperature regimes can
be identified. First, for T > 2Tc one has ϕsol, psol < 0.5.
Thus, the system can be described as a simple liquid. This
temperature regime, as defined by the dynamics, is exactly the
regime for which anharmonic effects become dominant. For
Tc < T < 2Tc one has psol > 0.5 and ϕsol < 0.5. Although
the system still mainly visits liquid-like MBs, at a randomly
given time it is most likely in a solid-like MB (landscape-
influenced regime). Around Tc there is a slow crossover to

Figure 40. Rationalizing the presence of solid-like and liquid-like
MBs for BMLJ for a range of different temperatures. (a) The
distribution ϕ(t, T ) of MB waiting times for different temperatures.
(b) The average value of 〈cos α(t)〉 versus the lifetime t (see text for
definition). Reprinted with permission from [224]. Copyright 2003
by the American Physical Society.

the regime where liquid-like MBs are hardly visited any more
(landscape-dominated regime). This analysis may therefore
help to uniquely define the different dynamic regimes observed
for a supercooled liquid.

In the spirit of the AG relation Odagaki has rationalized
that the waiting time distribution for the escape from trapped
configurations should display an algebraic behavior [251, 252].
The essential parameter is ρ(T ) + 1 ∝ T sc(T ). He has shown
that the mth moment of ϕ(τ) is finite if ρ(T )+ 1 > m − 1. On
this basis he identifies the temperature for which ρ(T ) = −1
as the Vogel–Fulcher temperature, the temperature for which
ρ(T ) = 0 as Tg where a transition from Gaussian (finite second
moment) to non-Gaussian dynamics occurs. Finally, at the
temperature for which ρ(T ) = 1 a kinetic transition takes
place.

As discussed in section 2 it has been numerically observed
that the number of diffusive directions fdw is proportional to
D even in the low-temperature regime, where according to the
above results activated processes should be dominant [67]. One
might be tempted to conclude that the long-range transport
is not restricted by high barriers but rather by the number
of free directions. This would disagree with the previous
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Figure 41. Temperature dependence of psol and ϕsol. In the lower
panel the resulting scenario of the exploration of the PEL is sketched
for the three temperature regimes. Reprinted with permission
from [224]. Copyright 2003 by the American Physical Society.

interpretation. However, this apparent discrepancy can be
(at least qualitatively) removed for the regime ϕsol < 0.5.
The number of diffusive directions will be proportional to
the probability to be in a liquid-like configuration, because in
solid-like configurations the system will mainly reside close to
the minimum. Thus one has to a good approximation

fdw ∝ 1 − psol ≡ pliq. (102)

To proceed further we define 〈τx 〉 (x ∈ liq, sol) as the average
waiting time of the liquid-like and solid-like configurations.
Note that 〈τliq〉 is basically temperature independent and that
〈τliq〉 
 〈τsol〉. Then one can write

D ∝ 1

〈τ 〉 = pliq

〈τliq〉 + psol

〈τsol〉 ≈ pliq

〈τliq〉 . (103)

For the last approximation we have used that the first term
is proportional to ϕliq and the second proportional to ϕsol.
Because 〈τliq〉 is basically temperature independent we have
the desired relation D ∝ pliq ∝ fdw. This does not imply
that in this temperature regime the slow processes are irrelevant
to understand the temperature dependence of pliq. Rather one
has pliq = ϕliq〈τliq〉/(ϕliq〈τliq〉 + ϕsol〈τsol〉). Since this is much
smaller than unity and since the main temperature dependence
comes from 〈τsol〉, it is the escape from the slow configurations
which determines the temperature dependence of pliq.

In [240] it has been proposed that there exist fluidized
domains with a very small volume fraction around Tg in
order to rationalize the invalidation of the Stokes–Einstein
relation. Actually, this fraction can be identified with pliq

and this is indeed a very small number at low temperatures.
Furthermore it has been postulated that the diffusion mainly
occurs when a particle belongs to a fluidized domain. From

equation (103) one may conclude that the contribution to the
diffusion constant in the fluidized domain is indeed governed
by ϕliq.

7. Sequences of MBs and their real space realization

So far we have discussed the emergence of waiting times for
the description of the escape characteristics from a single IS or
MB with strong emphasis on the energy of that corresponding
state. In this section the properties of sequences of MB are
discussed. Of special interest is the real space realization. In
particular, it turns out that the dynamics can be quantitatively
described in the framework of the continuous-time random
walk (CTRW).

7.1. Properties of MB transitions

First, the properties of individual transitions as well as
sequences of transitions are discussed. The real space
realization of the transitions is emphasized.

7.1.1. Single MB transitions. A convenient measure for the
localization of single transition events is the participation ratio

z1 =
∑

i

δr i

δRmax
(104)

where δr i is the shift of the i th particle and δRmax the shift
of the most mobile particle. z1 = 1 corresponds to a
strict single-particle dynamics. For BMLJ the results are
shown in figure 42 for two temperatures Th = 0.5 and
Tl = 0.435 [37]. Two important observations can be made.
First, there is basically no temperature dependence for the
participation ratio. Thus, the degree of localization of MB
transitions is to a large extent temperature independent in the
range of simulation temperatures. This does not mean that
there are no temperature-dependent length scales in the PEL
approach (see below). Second, the participation ratio only
slightly increases when comparing IS with MB transitions.
This implies that basically the same atoms are active during
subsequent IS transitions within an MB. The individual IS
transitions as well as the MB transitions have a string-like
pattern where the string size of the MB transitions is more
extended (containing on average seven particles) [37]. A more
extended string-like structure was also seen in [253] for CS2.

A different measure to quantify the dynamics is the
van Hove self-correlation function in one dimension, denoted
πn(x). It denotes the probability πn(x) that along a given axis
a randomly chosen particle moves by x after n transitions. For
isotropic systems πn(x) is symmetric around x = 0.

For BMLJ(N = 65), π1(x) is to a very good
approximation an exponentially decaying function [254].
Interestingly, it has been reported that for a large system the
van Hove self-correlation function of a single IS transition is
exponential for large and algebraic for small distances [62].
This is fully compatible with the present situation because the
atoms with very small displacements correspond to those far
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Figure 42. The participation ratio for MB and IS transitions for
BMLJ(N = 65) at two different temperatures. Reprinted with
permission from [37]. Copyright 2004, American Institute of
Physics.

away from the region of major mobility. Exactly these atoms
are not taken into account when considering small systems.

Further below, the Fourier transform of π1(x), i.e. π1(q),
is of major interest. For small q one can approximate
(independent of the actual form of π1(x))

π1(q) ≈ 1 − q2a2/6 (105)

where a2/3 is the second moment of the distribution π1(x)

whereas for q → ∞ one obtains π1(q) = 0. Both limits are
captured by the choice

π1(q) ≈ 1

1 + a2q2/6
. (106)

This relation is exact for an exponential distribution π1(x).

7.1.2. Correlations of successive MBs: waiting times and
energies. As shown in [212] to a good approximation
successive waiting times are statistically uncorrelated for
BMLJ(N = 65). Thus, the time evolution can be regarded
as a sequence of randomly chosen waiting times. For the
same data, the energies display some residual correlations
with a decay time of approximately ten MB transitions. This
behavior is to be expected if even the small BMLJ system is
not elementary; because after a MB transition only one of the
subsystems changes its energy, see section 5.3. Apparently,
these correlations do not imply the presence of correlated
waiting times. This can be explained by the fact that the
waiting time is to a large extent determined by the faster
component.

7.1.3. Correlations of successive MBs: real space properties.
In the simplest description subsequent MB transitions are
uncorrelated in real space, i.e. correspond to a Markovian
random walk process. This hypothesis would be invalidated,
e.g., by the presence of correlated forward–backward dynamics
or the simultaneous presence of slow and fast particles. In the
latter case a particle moving a large distance would most likely
also move a large distance in the subsequent MB transition.
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Figure 43. The dependence of πn(q) on n for different values of q
for BMLJ. Reprinted with permission from [254]. Copyright 2008
by the American Physical Society.

The Markov hypothesis can be formally written as

πn(x) =
∫

dx ′πn−1(x ′)π1(x − x ′). (107)

In Fourier space this convolution implies

πn(q) = π1(q)n. (108)

The n-dependence of πn(q) is studied in [254] for BMLJ(N =
65). As shown in figure 43 for q ≈ qmax the limiting behavior
log(πn(q)) ∝ n is already reached for n � 5. For smaller
q-values this holds for even smaller values of n.

The same feature can be also observed by analyzing the
total average MSD of the system after n transitions 〈R2(n)〉
(〈R2(n)〉/3 is the second moment of πn(x)). The above
Markov hypothesis would show up as 〈R2(n)〉 = a2n. Indeed,
apart from very small n this relation is very well fulfilled for
the MB transitions; see figure 44. Most importantly, the value
of a2 does not depend on temperature in the range of analyzed
temperatures. As a consequence (see below) the temperature
dependence of the diffusion constant D(T ) is fully determined
by the temperature-dependent waiting time. Note that for the
BMLJ system (a2/3)q2

max ≈ 0.3, where qmax is the maximum
of the static structure factor.

Interestingly, when repeating this analysis for the IS
transitions dramatic deviations can be seen in figure 44:
the deviations from linear behavior strongly increase and
the behavior for large n strongly depends on temperature,
indicating a temperature dependence of forward–backward
processes. These results just reflect the fact that direct
forward–backward correlations have been eliminated when
going from ISs to MBs. Thus, the theoretical description of
the macroscopic transport is much simpler in terms of MBs
than of ISs; see also [255] for a quantification of this effect.

In the same spirit also the long-time dynamics for BKS-
SiO2 has been analyzed [215]. The oxygen dynamics shows
a very similar behavior as described above for BMLJ. In
contrast, the value of a2 for the silicon atoms displays a
weak temperature dependence. As shown in [256] this can
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IS

N

Figure 44. The mean square displacement R2(n) for MBs as well as
for ISs, evaluated for the majority fraction of large particles.
Reprinted with permission from [230]. Copyright 2003 by the
American Physical Society.

be related to the presence of oxygen permutations like simple
C3-rotations which become more relevant at low temperatures
and which force the silicon atoms to return to the original
positions. If one excludes the time intervals during which
permutations happen the temperature dependence of a2 (Si)
disappears. Thus, the temperature dependence of D(T ) for
BKS-SiO2 is again fully characterized by the average waiting
time. Interestingly, the probability for an oxygen permutation
starts to increase as soon as the MB energy is below ecross [256].
Thus, ecross is indeed a crucial PEL parameter, characterizing
many aspects of the dynamics and in particular the availability
of adjacent configurations with similar activation energies.

7.2. Time-resolved dynamics

New features emerge if the MB scenario is interpreted in
dependence on time rather than the number of MB transitions.

7.2.1. Dynamic heterogeneities. The broad distribution of
waiting times in glass-forming systems gives rise to specific
properties for the time evolution. This is exemplified in
figure 45. Shown is the trajectory of a simple random
walker with step size unity, performing a jump after every
waiting time. The new waiting times are drawn randomly.
The emergence of short time intervals with many dynamical
processes is a simple consequence of the broad distribution
of waiting times and is thus particularly pronounced at
low temperatures. One can thus interpret the dynamics
as a sequence of residences in a single long-living MB
interrupted by mobile periods, typically involving many
successive transitions between short-lived MBs. A similar
observation has been made for CS2, where long-range jumps
could be interpreted as a correlated sequence of many IS
transitions [253].

The time dependence of the mobility can be captured by
the observable

μ(t, θ) = (1/N)
∑

i

[ri (t + θ/2) − ri (t − θ/2)]2. (109)
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Figure 45. Visualization of the real space dynamics. Shown is a
random walk with the waiting time distribution of an ideal Gaussian
glass-former. The spatial dynamics is a simple random walk with an
average step size of unity.

Qualitatively, it describes the mobility determined during the
time interval θ at time t . Using this quantity for θ =
τα [231] or for a significantly smaller value of θ for the
BMLJ system [52] and water [257], one can see that the
mobility strongly varies with time t . Another convenient
way is to use the distance matrix, which allows one to judge
whether or not the system was mobile between two times
t ′ and t ′′ as introduced by Ohmine [96] and used in recent
numerical [52, 213, 257] as well as experimental work [258]
to characterize the dynamic heterogeneities. The low-mobility
time periods can be identified with the residence in an MB with
a long waiting time. In any event, the observed patterns are a
direct consequence of the mechanism reflected in figure 45.
The resulting displacement field after a mobile time period is
quite compact [96] and involves 30–60 particles [52] (denoted
democratic particle motion by these authors), in contrast to the
string-like pattern after a single MB transition.

Several possibilities exist to explain the observation of
these compact clusters. (1) They result from collective
rearrangements happening in a short time interval. Using
the term cooperative relaxing units this scenario seems to be
favored, e.g., in [257]. (2) They consist of individual processes,
which, however, are triggered one after the other. (3) They
result from fully uncorrelated processes.

For the further discussion it is helpful to consider the
simple model in figure 45. Here, scenario (3) is realized.
One clearly sees the presence of bursts of mobility at low
temperatures. They are just a consequence of the broad
waiting time distribution. If, by chance, the neighbor region
is stuck in some immobile region the numerically observed
mobility patterns may result from scenario (3). Within the
KCM these patterns can be produced, too, by a sequence
of localized and facilitated events [259]. By definition this
corresponds to scenario (2). Some type of correlation in the
spirit of the KCM is suggested by the results in [149, 150].
In any event, the question of possible couplings of dynamic
processes is discussed in more detail in section 9. An argument
against (1) is that the bursts of mobility can be traced back
to individual MB transitions, basically performing a random
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walk in configuration space (see above). This seems to be
incompatible with a collective rearrangement.

A different way to characterize the dynamics of a single
particle is to record the time t1 when a particle has for the
first time moved a specific distance d . At this moment one
starts again and waits for the next time (t2 later) when again
the same distance d is moved etc. In this way one can obtain
a series t1, t2, . . . [259]. Two observations are made: first, at
low temperatures the times ti are broadly distributed. This just
reflects the presence of dynamic heterogeneities. Second, the
time t1 is longer than the average of the later times. This is
rationalized below (see section 7.3.2).

In this context it is interesting to note that the simulations
in the isoconfigurational ensemble have clearly revealed that
the particles which are mobile on the α-timescale already
belong to the most mobile particles on a much shorter timescale
(fast β-regime) [55]. Although a precise connection to the MB
picture has not been established so far, a simple connection
might indeed exist. Also recent NMR experiments point in this
direction [260].

7.2.2. Diffusion process. The observations, reported above,
have immediate consequences for the estimation of the MSD,
which is one of the central dynamic observables. In the limit
of large t � 〈τ 〉 the number of MB transitions can be taken
as n = t/〈τ 〉 with negligible relative fluctuations around this
value. Therefore one can write

D = 〈r 2(t)〉
6t

= R2(n = t/〈τ 〉)/N

6t
. (110)

As discussed, for large n one can write R2(n) = Na2n with a
temperature-independent distance a. This yields [230]

D = a2

6〈τ 〉 . (111)

This means that the complexity of the glass transition can
be to a large extent related to the temperature dependence
of the waiting time distribution. In contrast the spatial
aspects, expressed by a, are nearly temperature independent at
least in the temperature regime analyzed so far via computer
simulations. This property has been often used by many
authors, e.g. when estimating the exponent α for the violation
of the Stokes–Einstein relation. In this sense it is fortunate
that this property indeed seems to hold for a variety for glass-
forming systems.

7.2.3. Connection to the AG relation. In recent work La
Nave and Sciortino have analyzed a large number of short
trajectories for water and BMLJ [261, 262]. The time for every
trajectory was adjusted such that for all temperatures the mean
square displacement, averaged over all realizations, is unity.
For a given trajectory they determined the average IS energy ē,
obtained from regular quenching, and the diffusivity, obtained
from calculating the Euclidean distance between the initial and
the final configuration. After averaging over trajectories with

similar ē they could determine an energy-dependent diffusivity
D(ē, T ). Using a slightly modified version of equation (70)

D(T ) =
∫

dē p(ē, T )D(ē, T ) (112)

one can, of course, recover the macroscopic diffusion. In
some sense in their approach the coarse-graining on the MB
level has been replaced by a coarse-graining relative to a fixed
timescale. As a drawback one loses the direct relation to
the thermodynamics and to the specific saddles in the PEL.
A possible advantage of this type of coarse-graining is the
fact that D(ē, T ) can be compared with the AG expression
D∞ exp(BAG/T sc(ē)). Using the input for sc, known from the
thermodynamic analysis (see section 3), one can extract the
value of α from an appropriate fitting procedure. Thus, within
the AG framework the absolute value of the configurational
entropy can be estimated from the dynamics.

7.3. Continuous-time random walk (CTRW) formalism

The simple spatial aspects of the dynamics suggests that not
only the diffusion constant but also more complex dynamic
observables can be related to properties of the waiting time
distribution ϕ(t). The results, reported below, will hold
for arbitrary ϕ(t) as long as finite moments exist and thus
equilibrium properties can be calculated.

It will be shown that the framework of the CTRW formal-
ism can be used to describe the dynamics. The background of
this approach can be found, e.g., in [220, 263–265].

7.3.1. Conditions for a CTRW. Three conditions can be
formulated. If they are fulfilled the van Hove correlation
function Gs(x, t) can be fully expressed in terms of πn(x) and
ϕ(τ).

(C1) The transition pattern during a hop does not depend on the
waiting time since the previous hop. As a consequence,
the spatial and temporal contributions separate and one
can strictly write

Gs(x, t) =
∑

n

Sn(t)πn(x). (113)

Here Sn(t) denotes the probability to have exactly n
transitions during time t and generalizes the definition of
S0(t) in equation (90). This is the central equation of
the CTRW because it expresses the total dynamics during
time t in terms of discrete processes with well defined
probabilities. Of course, one may also analyze rotational
correlation functions with an analogous formalism. This
independence has been shown to be true for BMLJ with
good accuracy [254].

(C2) Successive waiting times are statistically uncorrelated so
that the time evolution can be regarded as a sequence
of randomly chosen waiting times. Also (C2) has been
confirmed (see above).

(C3) Subsequent jumps are uncorrelated. (C3) has been
discussed above and shown to be true with minor
deviations which hardly matter for q � qmax.
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time

Figure 46. Sketch of a random sequence of broadly distributed
waiting times. It is most likely that at a randomly chosen time one
starts in a time interval with a long waiting time.

Thus, the general physical picture is that of a random walk
in configuration space where all steps are uncorrelated and the
waiting times may be (in generalization to the standard random
walk) broadly distributed.

7.3.2. Prediction of S(q, λ). Of crucial importance is the
(persistence time distribution) ξ(t) that for a randomly chosen
starting point exactly a time t later the system hops for the first
time [266]. The average persistence time is defined as

〈τ 〉ξ =
∫

dt t ξ(t). (114)

In appendix D it is shown that for the Laplace transforms one
has

ξ(λ) = 1 − ϕ(λ)

λ〈τ 〉 (115)

and

S0(λ) = 1 − ξ(λ)

λ
. (116)

Furthermore, one can show (see also appendix 4) that 〈τ 〉ξ can
be expressed as

〈τ 〉ξ = 〈τ 2〉/(2〈τ 〉). (117)

For broad waiting time distributions one thus obtains 〈τ 〉ξ �
〈τ 〉. To understand this relation one has to realize that the
initial time zero will on average lie in a time interval with a
long waiting time, i.e. a long time is required for the next hop
to occur; see figure 46 for a sketch of this effect.

Based on conditions (C1)–(C3) the temporal Laplace
transform of the incoherent scattering function S(q, λ) can
be calculated analytically. Note that for a strict comparison
one has to use the function evaluated for the MB trajectory.
Of course, as shown in section 1.2, the α-relaxation part of
S(q, λ), evaluated for continuous trajectories, can be taken as
well for sufficiently low temperatures.

As derived in appendix D one obtains [266]

S(q, λ) = S0(λ) + π1(q)ξ(λ)SMW(q, λ) (118)

with

SMW(q, λ) = 〈τ 〉ξ(λ)

1 − ϕ(λ)π1(q)
. (119)

SMW(q, t) can be interpreted as the incoherent scattering
function under the condition that the initial time is directly after
a hop. In summary, S(q, t) is fully determined by the waiting
time distribution ϕ(t) (determining also ξ(t)) and the function
π1(x), characterizing the real space properties of the MB
transitions. Equation (118) has been used to characterize the
dynamics of so-called probe molecules within the KCM [51].

Table 3. Relation between βKWW, τ0, and βm.

βKWW τ0/〈τ 〉 βm

1 1 1
1/2 2 1/3
1/3 6 1/10
1/4 24 1/35

7.3.3. Calculating moments. The inverse Laplace
transformation of S(q, λ) in general cannot be performed
analytically. However, the general form equation (118) already
allows one to draw some important conclusions about the
properties of S(q, t). For this purpose, we define the two
timescales

τ0(q) ≡
∫

dt S(q, t) (120)

and

τ1(q) =
∫

dt t S(q, t)

/ ∫
dt S(q, t). (121)

From this we define

βm(q) = τ0(q)

τ1(q)
. (122)

For general non-exponential relaxation S(q, t) =
exp[−(t/τ)βKWW] one obtains

τ0 = 〈τ 〉/βKWW(1/βKWW) (123)

and
τ1 = 〈τ 〉(2/βKWW)/(1/βKWW). (124)

Whereas τ0(q) expresses the average decay time of S(q, t),
the ratio βm is a measure for the non-exponentiality.
Correspondingly, for βKWW = 1 one has βm = 1. In table 3
some special values are listed.

For later purposes we rewrite βm as

β−1
m (q) − 1 =

∫
dt t S(q, t) − τ0(q)

τ0(q)2
≡ Tβ(q)

τ0(q)2
. (125)

Importantly, both quantities can be calculated in the
framework of the CTRW [254]; see appendix E. The results
read

τ0(q) = 〈τ 〉
(

V + 1

1 − π1(q)

)
≈ 〈τ 〉

(
V + 1 + 6

q2a2

)

(126)
and

β−1
m (q) − 1 = Tβ

τ0(q)2
, (127)

where we have defined

V = 〈τ 2〉
2〈τ 〉2

− 1 = 〈τ 〉ξ
〈τ 〉 − 1 (128)

and

Tβ = 〈τ 3〉
6〈τ 〉 − 〈τ 2〉2

4〈τ 〉2
= 〈τ 2〉ξ

2
− 〈τ 〉2

ξ . (129)
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Figure 47. The q-dependence of (a) τ0(q) together with its
estimation via equation (126) and (b) of βm(q) together with its
estimation. In the inset the validity of the theoretical expectation
(d/dq)Tβ(q) = 0 is tested. Reprinted with permission from [254].
Copyright 2008 by the American Physical Society.

The last equation follows from the general relation

〈tn〉ξ = 〈tn+1〉
n + 1

. (130)

Note that equation (127) implies (d/dq)Tβ(q) = 0. V
characterizes the width of the waiting time distribution and
T that of the persistence time distribution. In particular,
both disappear for purely exponential relaxation. Note that
equations (126) and (127) imply that the whole q-dependence
of the relaxation time and the non-exponentiality parameter
βKWW can be expressed in terms of one or two parameters,
respectively, characterizing the waiting time distribution.

The validity of the CTRW assumptions for BMLJ allows
one to perform a self-consistency check of equations (126)
and (127); see figure 47. The expected dependences are
directly observed. This shows that the q-dependence of the
relaxation time as well as the degree of non-exponentiality can
be very well understood in the framework of the CTRW and
can be related to the values of V and T . The deviations at
large q are clearly related to the slight presence of correlated
forward–backward dynamics, as already seen in figure 43.
Actually, due to the extreme dependence of the third moment
on the fine details of ϕ(t) at long times, the value of Tβ has
been taken as a fitting parameter. Note that the q-dependence
of τKWW(q) is similar to the data reported in [22] and [267].

7.3.4. Large- and small-q limits. Of special interest are the
large- and small-q limits of τ0(q). For large q one expects a full

decorrelation of S(q, t) after one MB transition, i.e. S(q, t) has
the same meaning as S0(t). Thus, τ0(q → ∞) can be identified
with τα. From equation (126) follows [51]

τα = 〈τ 〉(1 + V ) = 〈τ 〉ξ . (131)

Around 1/q2 ≈ V a2/6(≡ (ξsingle)
2) there is a crossover

of τ0(q) from the q-independent large-q limit to the small-
q limit τ0(q) = 6〈τ 〉/(q2a2). This result can be easily
rationalized; see also [51]. During a time of 〈τ 〉ξ roughly
〈τ 〉ξ /〈τ 〉 MB transitions are performed. This results in an
MSD of (a2/3)〈τ 〉ξ /〈τ 〉 ≈ V a2/3 = 2(ξsingle)

2 along one
coordinate. Therefore, ξsingle corresponds to the distance a
particle moves on the timescale of the persistence time. Why
does the crossover happen for q ≈ 1/ξsingle? After a randomly
chosen time origin the subsequent dynamics of a particle can
be divided into two parts. For a time of order 〈τ 〉ξ it remains
immobile. Afterward it performs a random walk dynamics
with average waiting time 〈τ 〉. The crossover to Fickian
dynamics occurs when the time duration of the random walk
dynamics exceeds the initial immobile time period, i.e. 〈τ 〉ξ .
Thus, according to the above, the crossover length scale should
indeed be of the order of ξsingle. Naturally, for q ≈ 1/ξsingle also
the non-exponentiality parameter βm starts to approach its low-
q limit βm(q) = 1.

For small q one expects for general reasons τ0(q) =
1/(q2 D). Comparison with equation (126) naturally yields
equation (111) as already derived in section 7.1. Together with
equation (131) this results in

Dτα = (a2/6)(1 + V ) ≈ ξ 2
single. (132)

Thus, as stated in several models, the temperature dependence
of Dτα is directly related to the increase of dynamic
heterogeneity via the value of V . For the special case of an
ideal Gaussian glass-former the temperature dependence of
Dτα is given in equation (97). The resulting increase of ξsingle

shows that also within the PEL approach increasing length
scales naturally emerge.

If the waiting time distribution results from an elementary
system with well defined hopping rates one can express the
averages over the ϕ-distribution in equation (132) via the
corresponding Boltzmann averages, as outlined in section 6.
Using 1 + V = 〈−1〉p〈〉p , equation (132) can be strictly
rewritten as

Dτα = 〈τ 〉ξ /〈τ 〉 = 〈〉p〈1/〉p . (133)

This has already been used in section 6.4 for the discussion of
the violation of the Stokes–Einstein relation.

By fitting Gs(r, t) with a bimodal distribution of waiting
times for different systems, the typical timescales 〈τ 〉ξ and 〈τ 〉
have recently been obtained numerically [268]. On this basis
equation (133) has been successfully tested. Furthermore,
Gs(r, t) has been compared with the hypothetical function
one would obtain for ideal Gaussian diffusion [269]. For
sufficiently long times Gs(r, t) approaches the ideal Gaussian.
On this timescale τF the dynamics can be considered to be
Fickian. Naively, one might expect that τF should be directly
related to 〈τ 〉ξ and thus to τα. It turns out, however, that τF has
a stronger temperature dependence.
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7.3.5. The van Hove self-correlation function. It has been
reported that Gs(r, t) displays an exponential tail for a variety
of systems [267, 268]. Interestingly, as soon as the process
is discrete with respect to time, i.e. can be described by
the presence of waiting times, such behavior seems to be
generic [268]. This can already be seen in the simplest version
of the CTRW approach, involving only a single relaxation time
. Choosing λ = t and following the arguments in [268],
one can use a Poisson process in equation (113), yielding

Gs(x, t) =
∑

n

λn

n! exp(−λ)πn(x). (134)

According to the central limit theorem πn(x) can be
approximated by a Gaussian ∝ exp(−x2/2na2). Using
Stirling’s formula and transforming the sum into an integral,
one can perform a saddle point approximation to get the
dominant value of n, denoted nmax. One obtains for large x
that apart from logarithmic corrections nmax ∝ x/a. Physically
this means that particles with large x have performed a large
number of jumps, proportional to their value of x . As a
consequence, Gs(x, t) ∝ exp(−x2/2nmaxa2) ∝ exp(−const ·
x/a). In summary, the exponential tail in Gs(x, t) (or Gs(r, t))
is just a signature that the dynamics is governed by waiting
times which result, e.g., as a consequence of activated behavior
and is thus very general.

8. Comparison of different system sizes

Finally, one is interested in understanding the properties of
supercooled liquids of macroscopic size. In most hopping
models presented in the literature and reviewed in section 5
one concentrates on the local dynamics. This reflects the well
accepted fact that the dynamic processes in supercooled liquids
are localized so that these models aim to grasp the relevant
dynamic processes on this length scale. Implicitly it is assumed
that the dynamics of the total system can be described as an
independent superposition of these local processes. This is
naturally true when adding up very large systems. Here we
analyze whether the superposition hypothesis is already valid
for smaller systems.

8.1. Superposition of elementary systems: theory

8.1.1. Definition of independent systems. Simpler relations
can be formulated if the subsystems are characterized by
equation (61), i.e. obey the direct correlation between energy
and hopping rate. Here we consider a large system which
contains M elementary subsystems. Each subsystem of
the large system is characterized by its energy ei and the
corresponding hopping rate (ei ). The total energy reads
e = e1 + . . . + eM . A single hopping process on a subsystem
level is, of course, equivalent to a hopping process of the total
system because the total configuration changes.

What are the properties of the waiting time distribution
of the large system? This question is analyzed under two
assumptions.

(I1) The equilibrium probability distribution reads peq,M (e1,

. . . , eM ) = peq(e1) · · · peq(eM ).

(I2) The overall hopping rate M (e1, . . . , eM) is given by∑
i (ei ).

The first assumption reflects the lack of finite-size effects
for the distribution of states, the second the locality of the
individual particle displacements during one MB transition.

8.1.2. Waiting time distribution of the total system. In a
first step we start with a single system with N particles,
characterized by some waiting time distribution ϕN (τ ). What
is the waiting time distribution ϕ2N (τ ) of a system with 2N
particles, using (I1) and (I2)? Starting from some equilibrium
configuration both subsystems have independent persistence
times (characterized by ξN (t)). Then it is possible to predict
the next hopping event of either subsystem 1 or 2. This has to
be identified with a hopping event of the total system. One can
immediately write

ξ2N (t) = 2ξN (t)(S0)N (t), (135)

i.e. one system performs its first hop at time time t (with
probability ξN (t)) whereas the second system is still immobile
(with probability (S0)N (t)). Using the notation p(τ ) =
ϕ(τ)τ/〈τ 〉 it is shown in appendix F that one can rewrite
equation (135) as [170]

p2N(τ ) = − d

dτ

∫ ∞

τ

dτ ′ pN(τ ′)
∫ ∞

τ

dτ ′′ pN (τ ′′)

×
(

1 − τ 2

τ ′τ ′′

)
. (136)

This has been successfully used in [170] and [270] to check
the possibility to predict the waiting time distribution of a
system from that of smaller systems for BMLJ and BKS-SiO2,
respectively (see below).

8.1.3. Calculation of moments. The calculation of the
different moments of the waiting time distribution for the case
of the system, composed of M independent subsystems (each
characterized by λ = 1), can be found in appendix G. For the
first moment one obtains

〈τ (e)〉−1
M = M(e/M) exp[μ2(1 − 1/M)/2]. (137)

and
〈τ 〉−1

M = M exp[−μ2/2] (138)

which, as expected, is just M times the rate of the elementary
system.

Without the exponential term equation (137) corresponds
to the case where all ei are identical and equal to e/M ; see the
discussion before equation (61). Thus, the exponential term
reflects the energy fluctuations among the subsystems.

It is instructive to consider the limit of large M in
equation (137). The distribution of normalized energies
e/M in thermal equilibrium approaches a delta-function
centered around e = −Mβ̃σ 2. Substituting this energy into
equation (137) one obtains 〈τ (e)〉−1

M ≈ 〈τ 〉−1
M . Thus, the

energy dependence of the average waiting time disappears
and naturally approaches the average value. This explicitly
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shows that important information contained in small systems
disappears when approaching the thermodynamic limit.

Higher moments can also be calculated. It follows that

〈τ (e)2〉M/〈τ (e)〉2
M = 2 fM(μ) exp[μ2(1 − 1/M)/2] (139)

and

〈τ 2〉M/〈τ 〉2
M = 2 fM (μ) exp[μ2(1 + 1/M)/2] (140)

with a function fM(μ) defined in appendix G. From
equation (139) follows that the energy dependence disappears
when considering this ratio. Again, for large M it does not
matter whether or not the observables are resolved with respect
to energy. Naturally, for M = 1 the results agree with the
previous ones for elementary systems.

8.1.4. Problems of large system sizes. For the MSD the
validity of (I1) and (I2) guarantees that the diffusion constant
remains the same when increasing the system size. This is
explicitly reflected by equation (138). In general, however,
it is no longer possible to use the CTRW approach for the
macroscopic system. Let us assume that for a subsystem one
has π2(x) = ∫

dy π1(y)π1(x − y), i.e. (C3) is fulfilled. Does
(C3) also hold for a large system? In physical terms, validity
of the convolution implies that the probability for a particle
to move is independent of its translation during the previous
hopping process. This will be definitely invalidated for large
systems. Even in the case of independent processes it is
likely (see section 7) that one group of atoms performs several
hopping transitions before other groups of atoms can start.
This means that the probability to move is strongly correlated
during successive events so that (C3) will no longer hold. As
a consequence, for the calculation of S(q, t) one has to resort
to the local dynamics. Therefore, for the application of the
CTRW approach one has to define the waiting time distribution
on a local spatial scale as automatically done for small systems,
in the KCM approach [266] or particle-based definitions [259].

As will be discussed in section 9, even for systems
fulfilling the independence criteria (I1) and (I2), the local
dynamics may change when going from an elementary system
to a collection of subsystems. As a consequence, finite-size
effects for S(q, t) turn out to be stronger than for the diffusion
constant.

8.2. Simulation of different system sizes

8.2.1. Complete characterization of very small systems. For
very small systems (e.g. N = 32 monatomic Lennard-
Jones) a nearly complete characterization of all relevant low-
energy ISs and their connectivity is possible [158, 271]. It
turns out that apart from the fcc crystal there are few low-
energy configurations which dominate the properties already at
ambient temperatures. As a consequence the low-temperature
dynamics is always Arrhenius-like because it is governed by
the escape from a single or a few states [164]. Thus, it
is difficult to extract the relevant physics of glass formation
from such a small system. In general, the qualitative
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Figure 48. The normalized variance σ 2/N , calculated for different
temperatures for the BMLJ system. Reprinted with permission
from [164]. Copyright 1999 by the American Physical Society.

behavior seems to be simpler. For example, no forward–
backward processes are observed between ISs [271]. One can,
however, obtain information which for larger systems cannot
be obtained. In [271], e.g., the complete distribution of barriers
in dependence on the starting IS energy is reported. Of course,
for the real dynamics only the lowest barriers are of actual
interest.

8.2.2. Minimum representative system size and finite-size
effects. As discussed above the analysis of small systems has
many conceptual advantages. Thus, in the meantime several
groups use relatively small glass-forming systems in order to
extract as much information as possible; see, e.g., [213, 262]
for some recent work along this line. However, one has to deal
with the possible problem of finite-size effects. The optimum
system size for the PEL analysis fulfills two requirements:
(i) extension of the system size does not change the system
properties; (ii) reduction of the system size starts to generate
significant finite-size effects. Of course, in general one expects
a crossover phenomenon. Furthermore, a priori it is not
evident to what degree the optimum system size depends on
temperature.

To analyze finite-size effects of thermodynamic quantities
one may analyze how 〈σ 2(T )/N〉 varies with system size;
see figure 48. Interestingly, around a relatively small region
of system sizes (N between 40 and 60) the system starts to
show significant finite-size effects. Also for BKS-SiO2 N ≈
60 is a critical system size below which the thermodynamic
properties start to deviate. Given the strong relation between
thermodynamics and dynamics, it is not surprising that for
BMLJ the diffusion constant also starts to deviate for N �
40 [164] whereas for N = 60 for all temperatures no
significant finite-size effect (variation of the diffusion constant
by less than 15%) has been observed [170]. This may come
as a surprise because in the analyzed temperature regime the
value of ξcoll changes significantly [47, 48].

For the dynamics of BKS-SiO2 it is known that the
diffusion constant displays a significant finite-size effect up
to N ≈ O(103) [241, 272, 273]. This effect is related to the
presence of significant vibrational contributions for short times
in silica. The activation energy, however, does not change
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Figure 49. Estimation of p198(τ) for BKS-SiO2 based on p99(τ)
under the assumption of independent subsystems. This estimation is
compared with the actual waiting time distribution p198(τ). The data
have been scaled with respect to each other by a factor of 1.3 to
account for the shift in the diffusion constant. Reprinted with
permission from [270]. Copyright 2007 IOP Publishing.

significantly when N is varied for N � 99. Interestingly,
the degree of non-exponentially of the incoherent scattering
function for q = qmax is somewhat decreasing (from βKWW =
0.86 to 0.80) when going from N = 1002 to 60 and even
more dramatic upon further size reduction (βKWW = 0.65) for
N = 30 [270].

Furthermore, analyzing the q-dependence of the incoher-
ent scattering function S(q, t), i.e. τKWW(q), for the BMLJ sys-
tem it turns out that the finite-size effects are barely visible for
small q (equivalent to the statement of a missing finite-size ef-
fect for the diffusion constant) but strongly increase for large q .
For q = 2qmax one has an increase of a factor 2.5 [267]. Ob-
viously, finite-size effects become relevant when leaving the
small-q limit of the incoherent scattering function and measur-
ing quantities such as τα and βKWW. This at first sight coun-
terintuitive behavior (finite-size effects for small length scales,
corresponding to large q) will be rationalized in section 9.

Interestingly, Kim and Yamamoto [274] have observed
massive finite-size effects for a soft-sphere system. They have
simulated a monoatomic soft-sphere system. In the range of
temperatures studied in that work, for a binary mixture soft-
sphere system, system sizes of N = 130 were sufficiently
large to avoid finite-size effects (unpublished work). Thus,
one may speculate that the tendency of crystallization for a
monatomic system strongly depends on system size and thus
induces strong finite-size effects for transport quantities. This
has been explicitly checked for the Dzugutov liquid [275].

8.2.3. Doubling the system size. A very sensitive way
to check (I1) and (I2) is the comparison of the waiting
time distribution for a system with N and 2N particles via
equation (136). The result obtained for BKS-SiO2 is shown
in figure 49. Apart from a simple scaling factor (see above),
there is perfect agreement between the actual waiting time
distribution and the predicted one for N = 198. Thus, in
terms of MB transitions the system with N = 198 behaves
like a superposition of two independent N = 99 systems (in
the sense of (I1) and (I2)) and the waiting time distribution

of the larger system does not contain any new information as
compared to the smaller system.

A similar agreement can be found for BMLJ when going
from N = 65 to 130 [170]. Using some appropriately defined
time correlation function between ISs it has been verified
for BMLJ that the transition from 130 to 250 particles also
follows the rule expected from the assumption of independent
subsystems [255].

8.2.4. On BMLJ(N = 65). We have seen that BMLJ(N =
65) is large enough that in the considered range of temperatures
the extension of the system size obeys (I1) and (I2). The
remaining question is how to interpret the observed value
of λ = 0.55 < 1. A simple interpretation would be
that BMLJ(N = 65) can be regarded as an independent
superposition of M = 1/0.55 ≈ 2 independent subsystems.
Then the elementary system would approximately contain 30–
40 particles. The simulations have shown (see figure 48) that
finite-size effects are already very pronounced for this system
size (30–40). A priori this observation does not invalidate the
superposition hypothesis. An elementary subsystem is unlikely
to have the shape of a cube. Thus, simulating a system of
the size of an elementary subsystem with periodic boundary
conditions will most likely change the nature of the excitations.

There is a second argument which questions the
superposition hypothesis. The simulations have shown
that (e) does not display any significant deviations from
an Arrhenius behavior; see figure 34. If BMLJ(N =
65) were a superposition of two independent systems
(e) should have the additional temperature-dependent
factor exp[μ2(1 − 1/M))/2] (here M = 2) appearing in
equation (137). This factor does not seem to be present for the
simulation data because otherwise Arrhenius behaviour would
not be expected. Another deviation can be seen for the quantity
〈τ (e)2〉/〈τ (e)〉2. In agreement with equation (139) this ratio
is energy independent [212] but its absolute value is a factor
of two smaller than predicted by equation (139). Whereas for
T = 0.5 the simulated ratio is 8, equation (139) yields (using
β̃ = 1.6 and σ = 3/

√
2) a ratio of 16.

For a pure superposition the additional temperature-
dependent factor exp[μ2(1 − 1/M)/2] as well as the large
values of 〈τ (e)2〉/〈τ (e)〉2 reflect the fluctuations of local
energy (e1 and e2 for M = 2) for fixed total energy. Obviously,
these fluctuations are reduced for BMLJ(N = 65) (albeit not
absolutely suppressed). In other words, a system of 65 particles
cannot be characterized via two independent relaxation modes.
Conceptually, this is no problem at all. It simply means that
it is not possible to strictly define a hypothetical small system
with λ = 1 (and appropriately reduced values such as σ etc).
For a comparison of the theoretical formulas with the actual
systems one therefore has to take into account λ < 1.

In section 9 we suggest a mechanism for how the
fluctuations of the waiting time can be suppressed via some
specific interaction between the subsystems.

9. Length scales and dynamic coupling effects

So far we have analyzed the total system for different system
sizes. In particular, we have confirmed the superposition

45



J. Phys.: Condens. Matter 20 (2008) 373101 Topical Review

Figure 50. Sketch of active and passive exchange processes for a
bimodal system.

hypothesis expressed by (I1) and (I2) for BMLJ as well
as BKS-SiO2 (with some specific features; see above) as
long as a system is larger than some small system size
(e.g. 65 particles for BMLJ are sufficient). The waiting time
distribution of the larger system thus does not contain new
information as compared to the smaller one. The superposition
hypothesis also holds for thermodynamic observables such
as σ or α [170]. Finite-size effects, however, show up for
τα [267] and the non-exponentiality parameter βKWW [270].
Furthermore, the model of an ideal Gaussian glass-former
predicts a violation of the Stokes–Einstein relation which
is significantly stronger than observed experimentally. Do
these observations imply deviations from the superposition
hypothesis?

As discussed in section 8 the α-relaxation time depends
on a locally defined waiting time distribution which only
for small systems can be identified with the total waiting
time distribution. As will be shown, this local waiting time
distribution can depend on whether or not the small system is
embedded in a larger system. The ideas used in this context
have been, e.g., discussed in the context of the rate memory
in the 1990s [221, 276–278]. The key step is expressed in
figure 50. A tagged subsystem can have two relaxation rates
(slow and fast). For reasons of simplicity we assume that
the Boltzmann probability of both states is the same. Now
variation of the relaxation rate for this subsystem, also denoted
the exchange process, is possible in two ways. First, via a
relaxation process the system acquires a random new rate. The
related exchange process is called active, with an exchange rate
a ≈ slow. However, due to relaxation processes in adjacent
regions of the subsystem the local mobility can also change
(without performing a relaxation process). Formally, this can
be denoted a passive exchange process, occurring with some
rate p.

Naturally, the presence of passive exchange processes will
remove the very long waiting times because finally a very
immobile situation will be relieved. As shown below this
removes the long-time tails, appearing for an ideal Gaussian
glass-former. To quantify these ideas one has to formulate the
dynamic interaction between different subensembles such that
the distribution of states (I1) as well as the average waiting time
(I2) of a tagged subsystem do not change. Thus, this interaction
enters in a somewhat subtle way; see also [223]. Note

that these passive exchange processes reflect the interaction
between the relatively small elementary subsystems.

9.1. Energy master equation

9.1.1. Mean-field approach. To proceed we introduce the
probability p(ei , t) that a state in a tagged subsystem with
energy ei at t = 0 has not performed a relaxation process
until time t . As before, we explicitly restrict ourselves to the
description of the equilibrium situation. If no passive exchange
processes are present, the time evolution of p(ei , t) is simply
given by

dp(ei , t)

dt
= −p(ei , t)(ei ). (141)

To take into account fixed passive exchange processes one
may introduce the rate ki,± that a state with energy i changes
to a state with energy i ± 1. Demanding detailed balance,
i.e. ki,+/ki+1,− = peq(ei+1)/peq(ei), guarantees (I1). A
simple choice is ki,+ = k0 peq(ei+1) and ki+1,− = k0 peq(ei ).
Then equation (141) is generalized to

dp(ei , t)

dt
= −p(ei , t)(ei ) − (ki,+ + ki,−)p(ei , t)

+ ki−1,+ p(ei−1, t) + ki+1,− p(ei+1, t). (142)

This approach may be relevant in the limit of high
dimensions and corresponds to the mean-field case. Basically,
it is a generalization of the simple system with just two rates,
described above.

In the continuous description equation (142) can be
rewritten as
dp(e, t)

dt
= −p(e, t)(e) + K (d/de)[(peq(e)(d/de)p(e, t)

− p(e, t)(d/de)peq(e))]. (143)

As required by (I2) the average waiting time of the system does
not change by additional passive exchange processes.

A similar set of equations also appears in the description
of the energy diffusion in [220, 279]. In that work, however,
the stationary distribution depends on K , thereby invalidating
(I1) and (I2).

For the ideal Gaussian glass-former we have numerically
checked the effect of passive exchange processes via
equation (143). In figure 39 we show the numerical solution
for S0(t). As expected, the long-time decay is much faster and
the total curve can now be very well described by a stretched
exponential.

Simple model systems can be also treated analytically. To
elucidate the main features we discuss the simplest case of only
two rates, i.e.

ṗ1(t) = −1 p1(t) − k0 peq,2 p1(t) + k0 peq,1 p2(t)

ṗ2(t) = −2 p2(t) − k0 peq,1 p2(t) + k0 peq,2 p1(t).
(144)

Here we set k0 = q/〈τ 〉, i.e. q is a measure of how efficiently
relaxation processes in adjacent regions influence the local
mobility.

We are particularly interested in τα = ∫
dt S0(t) =

p1(t) + p2(t). Numerical simulations can be found in
figure 51. To understand its behavior we also derive an
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Figure 51. Checking the invalidation of the Stokes–Einstein relation
τα/〈τ 〉 = 1 for a two-state system. For q = 0 no passive exchange
processes are taken into account. For q = 0.1 the mean-field case is
compared with the explicit case of two subsystems.

analytical expression for τα (see appendix 8). For the special
case pi,eq = 1/2 one obtains

τα/〈τ 〉 = 1 + q

q + 412/(1 + 2)2
. (145)

Since D ∝ 1/〈τ 〉, equation (145) is a measure for the
deviation from the Stokes–Einstein relation. For 2/1 =
1 (qualitatively corresponding to high temperatures) this
expression is unity, independent of the strength q of the passive
exchange. For larger (or smaller) values of 2/1 = 1
the decoupling increases. However, the deviations from the
Stokes–Einstein relation become smaller with increasing q . In
general, for 2 �= 1 the passive exchange process decreases
the timescale of relaxation τα by allowing the very slow
molecules to relax faster and thus decreasing the deviations
from the Stokes–Einstein relation (equation (4)). Furthermore,
the degree of non-exponentiality decreases. All features agree
with the simulation results. This indicates that consideration
of the passive exchange is a key feature to understand the
relaxation processes in glass-forming systems. However,
τα/〈τ 〉 cannot increase beyond (1 + q)/q . This is a direct
consequence of the mean-field approach. In the limit slow →
0 a state with rate slow will effectively relax with a rate q/〈τ 〉
because of passive exchange processes. This is the limiting
value of the inverse structural relaxation time. Thus τα/〈τ 〉 ≈
1/q , which is in qualitative agreement with the exact result
1 + 1/q . As will be discussed below this limiting behavior is
an artifact of the mean-field approximation.

9.1.2. Non-mean-field case. Here we go beyond the mean-
field approximation. For reasons of simplicity we discuss a
system with two subsystems. Again we assume that (I1) and
(I2) are obeyed. What happens after a relaxation process of
subsystem 2? First, subsystem 2 chooses a random new energy
according to its energy density ϕ(e2). This corresponds to the
active exchange process. Furthermore, it may change the state
of subsystem 1. In contrast to subsystem 2 its probability
distribution is given by peq(e1). Thus, a passive exchange
process can be realized by choosing a new energy of subsystem

1 such that its equilibrium distribution is kept. This can be
implemented such that after MB transition of subsystem 2
two alternatives are possible. With probability q subsystem
1 selects a new energy according to the Boltzmann distribution
peq(e1) whereas with probability 1 − q the energy e1 remains
the same.

For a quantitative analysis we introduce pi j(t) as the
probability that subsystem 1 is in state i , subsystem 2 in state
j , and subsystem 1 has not performed a relaxation process
between time 0 and time t . pi j(0) corresponds to the standard
Boltzmann distribution peq(ei)peq(e j). To formulate a master
equation for pi j(t) one first considers the loss term −[i +
 j ]pi j(t). However, the actual decay of pi j(t) is much weaker
because relaxation processes of subsystem 2 need not change
the state (i, j) of the total system. If only active exchange
processes are present (q = 0), the gain term for pi j(t) is given
by ϕ(e j)i,tot with

i,tot(t) ≡
∑

j

 j pi j(t). (146)

This just expresses the fact that after an MB transition of
subsystem 2 the system ends in state j with probability ϕ(e j ).
If q > 0 this scenario only happens with probability 1 − q .
With probability q the state of subsystem 1 may also change.
In this case the gain term is given by peq(ei)ϕ(e j )tot with

tot(t) =
∑

i

i,tot. (147)

In total one thus obtains

(d/dt)pi j(t) = −[i +  j ]pi j(t) + ϕ(e j )[(1 − q)i,tot(t)

+ qpeq(ei)tot(t)]. (148)

For a numerical analysis we first consider a system with
just two relaxation rates and equal Boltzmann probabilities
peq(ei) = 1/2. The probability S0,sub(t) that subsystem 1 has
not performed an MB transition until time t is given by

S0,sub(t) =
∑

i j

pi j(t). (149)

As discussed in the context of the CTRW it is necessary to
define the structural relaxation time on a local basis, i.e.

τα =
∫

dt S0,sub(t). (150)

The numerical results are also displayed in figure 51. One
can see that for 1 ≈ 2, i.e. weak dynamic heterogeneities,
the behavior is very close to the mean-field case, whereas
for larger dynamic heterogeneities the deviation from Stokes–
Einstein is stronger than the mean-field case but weaker than
the case without passive exchange. The latter inequality is
trivial because naturally passive exchange processes suppress
very long relaxation times. The comparison with the mean-
field case is the main result of this analysis. Let us consider
the case where subsystem 1 is in a slow state, which, for
reasons of simplicity, we consider as immobile. In the mean-
field case there is a passive exchange process with a fixed rate
(qfast/2) which renders the immobile subsystem 1 mobile,
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Figure 52. The dependence of τα/〈τ 〉 on τα for an ideal Gaussian
glass-former with coupling parameters q = 0, 0.001 and 1,
respectively. The data are obtained via Monte Carlo simulations.
For q = 0 the theoretical slope 2/3 is observed. For finite q the
low-temperature behavior is described by a slope of approximately
0.32.

giving rise to a finite τα . In contrast, in the non-mean-field
case one has to take into account that with a probability of 0.25
both subsystems are in an immobile state. Thus the average
relaxation time τα is infinity. This exemplifies that the mean-
field approximation reduces the deviation from the Stokes–
Einstein relation too strongly.

Finally, we present a numerical solution for the ideal
Gaussian glass-former in three dimensions where nearest
neighbors experience the possibility of a passive exchange
process. The results are shown in figure 52 [280]. One can
see that in qualitative agreement with expectation the exponent
α, characterizing the violation of the Stokes–Einstein relation,
decreases from 2/3 to approximately 1/3, which is already
quite close to the experimental value. This reduction does
not depend on the chosen value of q . Thus, it seems that the
ideal Gaussian glass-former, supplemented by the presence of
passive exchange processes, can reproduce important features,
observed in simulations and experiments.

9.1.3. Evidence from simulations. It would be interesting
to identify the presence of passive exchange processes. In
principle it can be obtained from analyzing the series of MB
energies for systems composed of independent subsystems.
Since mobile subsystems will remain mobile for many hopping
processes the energetic contribution of slow subsystems does
not change during that time. This gives rise to long-range
correlations among successive MB energies (defined for the
total system). The presence of passive exchange processes
may strongly reduce these correlations as shown in [212]. A
more detailed analysis of correlations between adjacent regions
of supercooled liquids would be desirable for future work.
The present formalism already reflects some key properties
of interacting subsystems. However, a detailed description,
reflecting all relevant observations, still has to be developed.

9.1.4. Alternative approach. To take into account the
topology of the PEL the energy can be supplemented by
a second variable, which characterizes the region of the
corresponding state. In [281] the regions are characterized
by dividing the energy axis into small energy intervals. The
slow exploration of configuration space via transitions between
these regions is taken into account by expressing the partition
function in terms of the observation time. On a qualitative level
this phenomenological model can reproduce thermodynamic
properties in equilibrium and non-equilibrium situations.

9.2. Length scales in the PEL approach

In the context of identifying the temperature dependence
of ξsingle it has been stated by Berthier that ‘any theory in
which timescales do not directly follow from the existence
of spatial correlations growing when T is decreased . . . is
seriously challenged . . .’. In particular, the relevance of the
PEL approach is questioned [22, 282]. Indeed, due to the
omnipresence of dynamic heterogeneities, this is an important
question to be tackled.

First, we discuss the length scales appearing in the
PEL approach. We start with an elementary system (or a
nearly elementary system such as, e.g., BMLJ(N = 65)).
The basic length scale in the PEL approach characterizes
the size of single-particle displacements during a single MB
transition, characterized by the participation number [37]. In a
temperature range where, e.g., the maximum of χ4 displays a
significant variation [42], this length scale is basically constant.

The next length scale ξsingle is a direct consequence of
dynamic heterogeneities. As discussed above it is a measure
for the number of successive hops of a fast subensemble until
it becomes slow. Quantitatively, ξsingle is related to the second
moment of the waiting time distribution as compared to its first
moment. Most importantly, we get a non-trivial temperature
dependence of ξsingle if only active exchange processes are
taken into account. So far, the description of the dynamics in
terms of the PEL is basically exact because for small systems
the relevant parameters such as σ , ecross, etc can be directly
extracted from the simulations.

In a next step one has to take into account that the
elementary system is embedded in a much larger system. As
discussed above, the specific interaction of a tagged subsystem
with its environment can be formulated in terms of passive
exchange processes. In particular, this approach guarantees
that the waiting time distribution of the total system as well
its thermodynamics corresponds to the situation where the
large system is a superposition of independent elementary
systems. The waiting time distribution of an elementary
subsystem, however, will in general change due to the passive
exchange processes. Only its first moment remains the same.
This has two consequences. First, it will give rise to a
weaker temperature dependence of ξsingle. Second, successive
subsystems will become correlated at low temperatures.
A mobile subsystem will spread its mobility to adjacent
subsystems via passive exchange processes. Thus, particles in
adjacent volumes of the total system will become dynamically
correlated, thereby contributing to ξcoll. Furthermore, dynamic
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Figure 53. Sketch of the elementary systems of a glass-forming
system at different temperatures (f, fast; s, slow; ss, very slow).

heterogeneities directly emerge from a non-trivial PEL. Thus,
all observables which are related to dynamic heterogeneities
(e.g., ξsingle, structural relaxation time, non-exponentiality
parameter βKWW) can be to a first approximation derived from
the PEL of an elementary system. To obtain information
about multi-particle correlations and to refine the properties of
dynamic heterogeneities one has to take into account passive
exchange processes and thus extend the elementary system to
a superposition of elementary systems. This effect is sketched
in figure 53.

Of course, we cannot exclude that at much lower tempera-
tures, not accessible by present-day computer simulations, the
elementary system size also changes. This would, e.g., show
up as finite-size effects for the diffusion constant or a change
of the thermodynamics. However, the analysis for the two sys-
tems analyzed so far suggests that this effect is less important
than the increase of the length scales already contained in the
present results.

9.3. Comparison with the KCM

In a qualitative way the KCM [145, 146] can be reformulated
in the language we have used to characterize a supercooled
liquid in terms of a PEL. The same holds for the Glarum defect
dynamics [141]. We first consider the FA model [145]. Via the
facilitation rules a single spin can be either immobile or fast,
depending on the neighborhood. This spin can be regarded
as an elementary system which is described by two states
(immobile or fast). In the single-particle picture, developed
in [148], the single-particle dynamics is related to a spin flip.
In contrast to the PEL approach, active exchange processes
are not present, i.e. the mobility of a spin does not change
after a relaxation process of the related particle. A spin flip
will have immediate consequences for the mobility of the
adjacent spins (in particular at low temperatures where only
a few spins are up). Thus, a relaxation process leads to
a passive exchange process of the adjacent spins. In some
sense the physical picture is similar to the PEL approach. In
particular, the diffusion constant is not related to the interaction
of adjacent spins since it is only related to the concentration of
up-spins [148], whereas this interaction becomes important for
observables such as the relaxation time. Furthermore, one may
expect that the nature of the deviation from the Stokes–Einstein
relation will be similar if calculated within the PEL approach.

From this perspective the major simplification in the
KCM is the choice of the trivial elementary system. This
is reflected by the fact that the FA model only displays
Arrhenius behavior. To obtain non-Arrhenius behavior the

kinetic rules become anisotropic or the rules for mobility have
to be changed [148, 283]. In the PEL approach the non-
Arrhenius temperature dependence naturally emerges from the
complexity of the PEL of the elementary systems. Its physical
origin is thus very different from the KCM.

In summary, to some extent the KCM has similarities with
the PEL approach. As a consequence, it is, e.g., possible
for both approaches to describe dynamic processes via a
continuous-time random walk. The conceptual simplicity of
the KCM allows one to obtain many interesting predictions,
e.g. about the invalidation of the Stokes–Einstein relation. For
a closer comparison with atomistic glass-forming systems,
however, the PEL approach has several advantages. For
example it is possible to describe the full range of different
fragilities within the same physical model by just changing one
relevant energy parameter (ecross). Whereas the KCM is an
interesting phenomenological model with relevant predictions,
the PEL approach in its present version has been developed in
full agreement with the results from computer simulations.

10. Summary

The dream of a theoretician is to start from a Hamiltonian
and after some controllable approximations to end up with
non-trivial predictions, which then hopefully agree with the
experiment. Currently, no theory like this exists for the
calorimetric glass transition. Either one has to resort to
phenomenological models or to use computer simulations to
characterize the thermodynamic and dynamic features of glass-
forming systems. The goal of this review was, first, to give a
short overview of relevant observations and models discussed
in the literature and, second, to present a systematic approach
in terms of the PEL.

The key idea, stressed in the literature for a long time,
is the presence of localized activated events. Following the
key ideas by Goldstein and Stillinger one first maps the real
trajectory onto a discrete trajectory of transitions between
inherent structures. In a second coarse-graining step one may
combine inherent structures to metabasins. The dynamics
between metabasins turns out to be close to a simple random
walk in configuration space. This dramatic simplification
in the description of the dynamics of supercooled liquids
allows one to use the framework of the continuous-time
random walk to characterize the dynamics of supercooled
liquids. Using metabasins one can also relate the energy to
the mobility, i.e. establishing a quantitative relation between
thermodynamics and dynamics. In this context the ideal
Gaussian glass-former has emerged as a suitable model system
because it characterizes the properties of systems as different
as BMLJ and BKS-SiO2 to a very good approximation.
In this framework one can identify three relevant energy
scales: the width of the Gaussian distribution σ , the crossover
energy ecross, which describes the energy from which point
on activated processes become relevant, and the cutoff energy
ecut at the low-energy end of the PEL. Both energies reflect
distinctive geometric properties of the PEL. The emergence
of ecross can be related to a percolation-like process when the
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system moves between different regions of the configuration
space.

If ecut is not accessible in the considered temperature
range, the ideal Gaussian glass-former describes systems of
moderate to very pronounced fragility. To first approximation,
it is governed by only a single dimensionless parameter
ecross/σ , and any temperature-dependent observable depends
(to a good approximation) on the dimensionless parameter
μ = β − |ecross/

√
λσ |. Many of the experimentally observed

properties of supercooled liquids are recovered: (i) increase
of dynamic heterogeneities with decreasing temperature,
(ii) violation of the Stokes–Einstein relation and (iii) a direct
relation between dynamic and thermodynamic fragility. All
predictions work without any additional model assumptions.
Within this class of systems the non-exponentiality of
relaxation does not depend on fragility, if evaluated at a
fixed relaxation rate. If one restricts oneself to the group of
organic molecules, the experimental situation of the possible
relation of non-exponentiality and fragility is not clear-cut [26].
More generally, all properties (such as non-exponentiality and
dynamic length scales) turn out to be mainly a function of
τα. This is consistent with the observed independence of the
dynamic length scales from the fragility [49]. Of course,
taking into account the remaining dimensionless parameters
λ, and V0/σ of the ideal Gaussian glass-formers and κ for
some additional minor deviations, residual fluctuations among
different glass-formers can be expected.

If the cutoff is relevant, one has a transition from non-
Arrhenius to Arrhenius behavior. This naturally renders
the relaxation only weakly non-exponential and furthermore
displays a strong behavior in the fragility classification
scheme. This effect may be particularly pronounced for
network-forming supercooled liquids, being related to the
disappearance of local defects at low temperatures. Comparing
systems with and without relevant cutoff-effects, some
overall correlation between non-exponentiality and fragility is
recovered.

If the energy is interpreted as stemming from strongly
interacting two-level systems, one may well envisage a
distribution for which the width of peq(e), i.e. σ 2, decreases
with decreasing temperature; see [185]. In some sense this
might interpolate between the description of strong systems
(using a well defined cutoff energy) and that of Gaussian
systems without cutoff, and would introduce a weak coupling
between fragility and non-exponentiality. Whether or not this
scenario is relevant is still an open question.

More generally, the PEL approach has a strong relation
to models postulating the presence of free energy barriers
(e.g. RFOT), as well as the KCM. In the first type of
model the important ingredients are the barriers as well as
their fluctuations. This can be directly mapped on the PEL
description. The fluctuations can be related to the effect of the
dynamics of adjacent subsystems on the local configuration.
What is missing in the PEL approach is the direct relation
between dynamics and configurational entropy. Nevertheless,
thermodynamics is very important since it determines the
typical height of the PEL where the system resides at a given
temperature. The concept of passive exchange processes as

well as the possibility to use the framework of the continuous-
time random walk gives the PEL approach a direct link to
the KCM, but avoids the oversimplification of the elementary
system.

Naturally, the present analysis can be directly extended
to take into account non-equilibrium effects. Furthermore,
transitions between inherent structures may account for the
properties of the slow β-process. In general, the PEL
approach is very versatile to elucidate basic mechanisms of
the thermodynamics and dynamics of supercooled liquids.
Hopefully, the present review will stimulate further activities
along this line of research.
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Appendix A

An IS can be uniquely mapped on a sequence of N numbers
xi which are either 0 or 1 and denote the distance between
particles i and i + 1. By definition N/2 values have to be 0
and N/2 values to be 1. Thus, G∞

N is the number of ways in
which N/2 sites out of N sites can be selected, i.e. G∞

N =
N !/(N/2)!(N/2)!. Using Stirling’s approximation, valid for
large N , one has ln G∞

N ≈ N ln 2 − (1/2) ln N . Writing
G∞

N = exp(α(N)N) one can identify α = ln 2 − ln N/(2N).
Thus for large Nα becomes N independent.

To determine the number of adjacent ISs one has to realize
that during a transition between two ISs a pair (0, 1) changes
to (1, 0) or vice versa. Therefore the number of adjacent ISs is
equivalent to the number of pairs (0, 1) or (1, 0) in the sequence
of N numbers introduced above. Naturally, the number of
adjacent ISs depends on the initial IS. It is possible, however,
to determine an average number of adjacent ISs. Starting from
some number (0 or 1) the probability that the next number
(e.g. on the right) is different is pr = N/(2N − 2). For a
given sequence of N numbers there exist on average N pr =
N2/(2N − 2) adjacent ISs which for large N is approximated
by N/2. Thus the number of adjacent ISs scales with the
system size for large N .

Appendix B

The inverse average waiting time can be written (for not too
high temperatures for which the population of states with
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e > ecross is not relevant) as

〈τ 〉−1−1
0 =

∫ ∞

ecut

de peq(e) exp(−λβ̃(e−ecross))

=
∫ ∞

ecut
de exp(−(e−ecross+β̃σ 2)2/2σ 2) exp(−λβ̃(e−ecross))∫ ∞

ecut
de exp(−(e−ecross+β̃σ 2)2/2σ 2)

=
∫ ∞

ecut−ecross+β̃σ 2(1−λ)
deexp(−e2/2σ 2)exp(−(2λ−λ2)β̃2σ 2/2)∫ ∞

ecut−ecross+β̃σ 2 deexp(−e2/2σ 2)
.

(B.1)

For the explicit calculation of 〈τ 〉 one has to take into
account the limits of the Gaussian integrals. Neglecting
factors of order unity one can approximate

∫ ∞
a dx exp(−x2) ∝

exp(−a2/2) for a � 1. For λ = 1 Arrhenius behavior
starts for σ 2β̃ > −ecut. In the low-temperature limit one can
approximate

〈τ 〉−1−1
0 ≈ exp(−β̃2σ 2/2)

exp(−(ecut − ecross + β̃σ 2)2/2σ 2)

= exp(−β(ecross − ecut)) exp((e2
cut − e2

cross)/2σ 2).

(B.2)

This result directly translates into equation (76). The situation
is somewhat different for λ < 1. Here, a true activated
behavior is obtained if β̃σ 2(1 − λ) � ecross − ecut. Using
again the approximations for the Gaussian integrals one ends
up with equation (77).

Appendix C

First, one may calculate

dS0(u)/du = −1/
√

2πμ2

∫
dv exp(−v2/2μ2) exp(u − v)

× exp(− exp(u − v)). (C.1)

This term can be approximated for small u, i.e. t ≈ 1/�.
The function exp(x) exp(− exp(x)) has a relevant contribution
only for small x and can to a good approximation be written as
exp(−1 − x2/2). Using this approximation in equation (C.1)
one gets after evaluation of the Gaussian integral

ln(−dS0(u)/du) = −1 − (1/2) ln(1 + μ2) − u2/[2(1 + μ2)].
(C.2)

One can compare this expression with a stretched exponential
SKWW(u) = exp(−(t/τKWW)βKWW) = exp(− exp(β(u − w)))

with w = − ln(τKWW�). One obtains (for small |u − w|)

ln(−dSKWW(u)/du) ≈ −1− ln βKWW −β(u −w)2/2. (C.3)

Interestingly, equation (C.3) can be mapped onto equa-
tion (C.2) when choosing βKWW = 1/

√
1 + μ2 and τKWW =

1/�. Actually, a more detailed analysis shows that for the
above parameters S0(u) − SKWW(u) is a small but finite con-
stant for u ≈ 0. This can be accounted for by choosing
τKWW > 1/� in the fitting procedure.

Appendix D

For a discussion of the CTRW a few probability functions
become relevant [265, 266].

(1) The key quantity is the probability S0(t) that during a time
interval of length t the system does not hop. In analogy
we define the probability Sn(t) to display exactly n hops
during this time interval.

(2) (S0(t)−S0(t+	t)) (=−S′
0(t)	t for small 	t) denotes the

probability that the system hops during a time interval of
length 	t and does not hop in the previous (alternatively
subsequent) time interval of length t . From this quantity,
two different probabilities can be derived. First, the
probability density ξ(t) (persistence time distribution) that
for a randomly chosen starting point exactly a time t later
the system hops for the first time is directly given by
−S′

0(t). Second, the probability χ(t) that after a hop there
is no further hop during the subsequent time interval of
length t can be interpreted as a conditional probability.
Note that the probability that a transition happens during
a randomly chosen infinitesimally small time interval 	t
is given by 	t/〈τ 〉, where 〈τ 〉 is the average waiting time.
Then χ(t) can be simply written as

χ(t) = −S′
0(t)	t/(	t/〈τ 〉) = −S′

0(t)〈τ 〉 = ξ(t)〈τ 〉.
(D.1)

(3) Analogously,

ϕ(t) ≡ (χ(t) − χ(t + 	t))/	t = 〈τ 〉S′′
0 (t) = −〈τ 〉ξ ′(t)

(D.2)
denotes the probability density that after a hop the next
hop happens exactly a time t later. This is exactly the
waiting time distribution (sometimes also denoted the
exchange time distribution [51]). From equation (D.2)
one can express the average persistence time via partial
integration in terms of the waiting time distribution:

〈τ 〉ξ = 〈τ 2〉/(2〈τ 〉). (D.3)

Using the rules of Laplace transformations these relations
can be rewritten as

χ(λ) = 1 − ϕ(λ)

λ
(D.4)

ξ(λ) = χ(λ)

〈τ 〉 (D.5)

and

S0(λ) = 1 − ξ(λ)

λ
. (D.6)

This means that all probabilities can be finally expressed in
terms of the waiting time distribution ϕ(t).

Following condition (C3) the observable Sn(t) can be
expressed as a convolution of n + 1 terms ξ � ϕ · · · � ϕ � χ .
This convolution just expresses that for a randomly chosen
time there are exactly n transitions during the subsequent time
interval of length t . Using the Laplace transformation one can
then write (n � 1)

Sn(λ) = ξ(λ)ϕ(λ)n−1χ(λ). (D.7)
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Switching to q-space from equation (113) one directly
obtains (keeping the n = 0 term separate)

S(q, λ) = S0(λ) +
∞∑

n=1

ξ(λ)ϕ(λ)n−1χ(λ)π1(q)n

= S0(λ) + π1(q)ξ(λ)SMW(q, λ) (D.8)

with

SMW(q, λ) = χ(λ)

1 − ϕ(λ)π1(q)
. (D.9)

Appendix E

First, one can rewrite

τ0(q) = S(q, λ = 0) (E.1)

and

τ1(q) = −[(d/dλ)S(q, λ = 0)]/S(q, λ = 0). (E.2)

Now the goal is to evaluate the different ingredients of
equation (118) up to linear order in λ. From the Taylor
expansion of ϕ(t) and successive partial integration one
obtains

ϕ(λ) =
∑

n

(−λ)n〈τ n〉/n!. (E.3)

For the calculation of τ0(q) and τ1(q) one needs the linear
expansions (using the abbreviation z ≡ π1(q))

S0(λ) = 1

λ
− 1 − ϕ(λ)

λ2〈τ 〉 ≈ 〈τ 2〉
2〈τ 〉 − λ

〈τ 3〉
6〈τ 〉

ξ(λ) ≈ 1 − λ
〈τ 2〉
2〈τ 〉

SMW(q, λ) ≈ 〈τ 〉 − (λ/2)〈τ 2〉
1 − z + λz〈τ 〉

≈ 〈τ 〉
1 − z

− λ

[ 〈τ 2〉
2(1 − z)

+ z〈τ 〉2

(1 − z)2

]
. (E.4)

This yields for small λ

S(q, λ) ≈ 〈τ 2〉
2〈τ 〉 + z〈τ 〉

1 − z

+ λ

[
(1−z)2〈τ 3〉

6〈τ 〉 + z(1 − z)〈τ 2〉 + z2〈τ 〉2
]

(1 − z)2
. (E.5)

From the λ-independent term of S(q, λ) equation (126) can be
directly reproduced. Furthermore, one can easily check that the
λ1-term of S(q, λ) can be rewritten as τ0(q)2 + Tβ〈τ 〉2. This
immediately gives rise to equation (127).

Appendix F

From the derivative of equation (135) one directly obtains
(setting 〈τ 〉 = 1 for reasons of simplicity and using
equations (D.1))

p2N (t) = 2t (ϕN (t)(S0(t))N + ξN (t)2). (F.1)

The right side of equation (F.1) can be further manipulated as
(omitting the index N)

−(d/dt)[2ξ(t)t S0(t) + S0(t)
2]

= −(d/dt)

[
ξ(t)t +

∫ ∞

t
dτξ(τ )

]2

+ (d/dt)[t2ξ(t)2]2

= −(d/dt)

[∫ ∞

t
dτϕ(τ )τ

]2

+ (d/dt)[t2ξ(t)2]2

= − d

dt

∫ ∞

t
dt ′ p(t ′)

∫ ∞

t
dt ′′ p(t ′′)

(
1 − t2

t ′t ′′

)
. (F.2)

This proves equation (136).

Appendix G

To calculate the different moments (here we restrict ourselves
to λ = 1) we first recognize that the energy e of the total system
is distributed according to

peq,M(e)= 1√
2π Mσ 2

exp[−(e−Mecross+Mσ 2β̃)2/(2Mσ 2)].
(G.1)

This is a generalization of equation (60) by multiplying
the energies as well as the variance by M as implied by
(I1). For the further analysis we introduce εi = ei −
e/M as the deviation from the average energy. Now the
partitioning of the system is characterized by the εi . With
these new variables peq,M (e1, . . . , eM ) is directly translated
into peq,M(ε1, . . . , εM ).

In what follows we will use the notation 〈· · ·〉p,M as the
average over peq,M (e1, . . . , eM ) and 〈· · ·〉p,M (e) as the same
average but for fixed total energy e = e1 + · · · + eM .

In the next step we introduce the conditional probabilities
peq,M (ε1, . . . , εM |e) for a fixed energy e of the total system.
According to the definition of the εi this requires

∑
i εi = 0.

Using equation (G.1) one obtains

peq,M (ε1, . . . , εM |e) = peq,M (ε1, . . . , εM )/peq,M (e)

=
∏

j

exp(−ε2
j /2σ 2)(2π Mσ 2)1/2(2πσ 2)−M/2δ

(∑
i

εi

)
.

(G.2)

Furthermore, one can write

M(ε1, . . . , εM |e) = exp[(β̃/M)(e − Mecross)]
∑

i

exp(β̃εi ).

(G.3)
One can proceed with the help of∫

dε1 . . . dεM

M∏
j=1

exp(−x2
j /2) exp(μx1)δ

(
M∑

j=1

x j

)

=
∫

dε1 . . . dεM dq
∏

j

exp(−x2
j /2)

× exp(μx1) exp

(
iq

∑
j

x j

)

∝
∫

dq exp[(μ + iq)2/2] exp[(M − 1)(iq)2/2]
∝ exp[μ2(1 − 1/M)/2]. (G.4)
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To obtain the last two lines appropriate quadratic substitutions
have been performed. This directly yields

〈M 〉p,M (e) = 1/〈τ 〉M (e) = M(e/M) exp[μ2(1−1/M)/2].
(G.5)

Energy integration yields

1/〈τ 〉M = M exp[−μ2/2]. (G.6)

Of further interest is the product 〈M 〉p,M (e)〈−1
M 〉p,M(e).

Note that the e-dependence of M cancels out. The first factor
involves the integral

fM (μ) ≡ M
∫

dε1 · · ·
∫

dεM p(ε1, . . . , εM |e)

×
[∑

i

exp(β̃εi )

]−1

(G.7)

which cannot be solved analytically. For the case M = 2 it can
be approximated by

f2(μ) ≈ 2 + 2
1+4μ

2μ√
π

+ 1
(G.8)

which correctly reproduces the limits of small and large μ.
With the definition of fM (μ) one can finally write

〈M 〉p,M(e)〈−1
M 〉p,M (e) = fM (μ) exp[μ2(1 − 1/M)/2].

(G.9)
Thus, one obtains in particular

〈τ 2〉M (e)

[〈τ 〉M (e)]2
= 2 fM(μ) exp[μ2(1 − 1/M)/2]. (G.10)

Appendix H

Starting from a set of linear differential equations (d/dt) �p(t) =
A �p(t) ( �p, vector with n components; A, nxn-matrix with a
constant coefficient) the solution can be formally written as
�p(t) = exp(At) �p(0). As a consequence one has

∫
dt �p(t) = −A−1 �p(0). (H.1)

In the present case one has

A =
( −1 − k0/2 k0/2

k0/2 −2 − k0/2

)
(H.2)

and thus

A−1 = 1

12 + k0

( −2 − k0/2 −k0/2
−k0/2 −1 − k0/2

)
(H.3)

and �p(0) = (0.5, 0.5).
Summing over the different components of equation (H.1)

yields

τα = (1 + 2)/2 + k0

k0(1 + 2)/2 + 12
; (H.4)

with 〈τ 〉−1 = (1 + 2)/2 and k0 = q/〈τ 〉 one immediately
ends up with equation (145).
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